A317879 Number of free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
1, 1, 2, 4, 11, 29, 83, 251, 767, 2403, 7652, 24758, 80875, 266803, 887330, 2972108, 10016981, 33942461, 115572864, 395226810, 1356840007, 4674552089, 16156355357, 56003840659, 194651585875, 678220460687, 2368505647624, 8288873657180, 29064904732911
Offset: 1
Keywords
Examples
The a(5) = 11 IMEs: o[o[o]] o[o][o] o[o[][]] o[o[],o] o[o,o[]] o[][o[]] o[][][o] o[o[]][] o[][o][] o[o][][] o[][][][]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
allIdExpr[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h],Select[Tuples[allIdExpr/@p],UnsameQ@@#&]}],{p,Join@@Permutations/@IntegerPartitions[g]}]]]; Table[Length[allIdExpr[n]],{n,12}]
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
Extensions
Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018
Comments