A317882 Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.
1, 1, 2, 5, 12, 31, 79, 211, 564, 1543, 4259, 11899, 33526, 95272, 272544, 784598, 2270888, 6604900, 19293793, 56581857, 166523462, 491674696, 1455996925, 4323328548, 12869353254, 38396655023, 114803257039, 343932660450, 1032266513328, 3103532577722
Offset: 1
Keywords
Examples
The a(5) = 12 AMEs: o[o[o]] o[o][o] o[o[][]] o[o,o,o] o[][o[]] o[][o,o] o[][][o] o[o[]][] o[o,o][] o[][o][] o[o][][] o[][][][]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
a[n_]:=If[n==1,1,Sum[a[k]*If[k==n-1,1,Sum[a[d],{d,Divisors[n-k-1]}]],{k,n-1}]]; Array[a,12]
-
PARI
seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
Formula
a(1) = 1; a(n > 1) = a(n - 1) + Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).
Extensions
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
Comments