cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317882 Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 79, 211, 564, 1543, 4259, 11899, 33526, 95272, 272544, 784598, 2270888, 6604900, 19293793, 56581857, 166523462, 491674696, 1455996925, 4323328548, 12869353254, 38396655023, 114803257039, 343932660450, 1032266513328, 3103532577722
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure achiral multifunction (with empty expressions allowed) (AME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g, ..., g] where h and g are AMEs. The number of positions in an AME is the number of brackets [...] plus the number of o's.
Also the number of achiral Mathematica expressions with one atom and n positions.

Examples

			The a(5) = 12 AMEs:
  o[o[o]]
  o[o][o]
  o[o[][]]
  o[o,o,o]
  o[][o[]]
  o[][o,o]
  o[][][o]
  o[o[]][]
  o[o,o][]
  o[][o][]
  o[o][][]
  o[][][][]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*If[k==n-1,1,Sum[a[d],{d,Divisors[n-k-1]}]],{k,n-1}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = a(n - 1) + Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018