A317883 Number of free pure achiral multifunctions with one atom and n positions.
1, 0, 1, 1, 3, 4, 10, 17, 37, 70, 150, 299, 634, 1311, 2786, 5879, 12584, 26904, 58005, 125242, 271819, 591297, 1290976, 2825170, 6199964, 13635749, 30057649, 66386206, 146903289, 325637240, 723024160, 1607805207, 3580476340, 7984266625, 17827226469
Offset: 1
Keywords
Examples
The a(7) = 10 PAMs: o[o[o[o]]] o[o[o][o]] o[o][o[o]] o[o[o]][o] o[o][o][o] o[o[o,o,o]] o[o][o,o,o] o[o,o][o,o] o[o,o,o][o] o[o,o,o,o,o]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Divisors[n-k-1]}],{k,n-2}]]; Array[a,12]
-
PARI
seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
Formula
a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, May 03 2019
Extensions
Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
Comments