A317903 a(n) = A038394(n)^^A038394(n) (mod 10^len(A038394(n))), where ^^ indicates tetration or hyper-4 (e.g., 3^^4=3^(3^(3^3))).
4, 76, 176, 4176, 314176, 91314176, 891314176, 80891314176, 88080891314176, 5288080891314176, 705288080891314176, 10705288080891314176, 2410705288080891314176, 912410705288080891314176, 42912410705288080891314176, 9242912410705288080891314176, 989242912410705288080891314176
Offset: 1
Examples
For n = 6, a(6) = 13117532^^13117532 (mod 10^8) == 91314176.
References
- Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6
Links
- Marco Ripà, On the Convergence Speed of Tetration, ResearchGate (2018).
Programs
-
PARI
tmod(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^tmod(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + tmod(b, eulerphi(n))));} f(n) = fromdigits(concat([digits(p) | p<-Vecrev(primes(n))])); \\ A038394 a(n) = if (n==1, 4, my(x=f(n)); tmod(x, 10^#Str(x))); \\ Michel Marcus, Sep 12 2021
Formula
a(n) = (p(n)p(n-1)_p(n-2)...3_2)^^(p(n)_p(n-1)_p(n-2)...3_2) (mod 10^len(p(n)_p(n-1)_p(n-2)..._3_2)), where len(k) := number of digits in k.
Extensions
More terms from Jinyuan Wang, Aug 30 2020
Comments