cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A317913 Expansion of Product_{k>=2} (1 + k*x^k).

Original entry on oeis.org

1, 0, 2, 3, 4, 11, 14, 29, 35, 85, 101, 187, 276, 419, 686, 1042, 1483, 2258, 3517, 4727, 7720, 10582, 15842, 21985, 32744, 45586, 65598, 93940, 131684, 183731, 260977, 357689, 500476, 699225, 946851, 1342110, 1808841, 2495154, 3375385, 4657186, 6224608, 8524443, 11468183, 15428030
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2018

Keywords

Comments

Sum of products of terms in all partitions of n into distinct parts >= 2.

Examples

			a(7) = 29 because we have [7], [5, 2], [4, 3] and 7 + 5*2 + 4*3 = 29.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+ i*b(n-i, min(n-i, i-1)))
        end:
    a:= n-> b(n$2) -`if`(n=0, 0, b(n-1$2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 10 2018
  • Mathematica
    nmax = 43; CoefficientList[Series[Product[(1 + k x^k), {k, 2, nmax}], {x, 0, nmax}], x]
    nmax = 43; CoefficientList[Series[Exp[Sum[Sum[(-1)^(j + 1) k^j x^(j k)/j, {k, 2, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{j>=1} Sum_{k>=2} (-1)^(j+1)*k^j*x^(j*k)/j).
a(n) + a(n-1) = A022629(n). - Vaclav Kotesovec, Aug 21 2018
Showing 1-1 of 1 results.