A317926 Denominators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).
1, 2, 1, 8, 1, 2, 1, 16, 2, 1, 1, 8, 1, 2, 1, 128, 1, 4, 1, 4, 1, 2, 1, 16, 1, 1, 2, 8, 1, 1, 1, 256, 1, 1, 1, 16, 1, 2, 1, 8, 1, 2, 1, 8, 1, 2, 1, 128, 2, 1, 1, 4, 1, 4, 1, 16, 1, 1, 1, 4, 1, 2, 2, 1024, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 8, 1, 1, 1, 64, 8, 1, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 4, 2, 1, 1, 1, 1, 8, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Denominator @ Array[f, 100] (* Amiram Eldar, Dec 12 2022 *)
-
PARI
A317925perA317926(n) = if(1==n,n,(eulerphi(n)-sumdiv(n,d,if((d>1)&&(d
A317925perA317926(d)*A317925perA317926(n/d),0)))/2); A317926(n) = denominator(A317925perA317926(n)); -
PARI
for(n=1, 100, print1(denominator(direuler(p=2, n, ((1-X)/(1-p*X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d 1.