A046644 From square root of Riemann zeta function: form Dirichlet series Sum b_n/n^s whose square is zeta function; sequence gives denominator of b_n.
1, 2, 2, 8, 2, 4, 2, 16, 8, 4, 2, 16, 2, 4, 4, 128, 2, 16, 2, 16, 4, 4, 2, 32, 8, 4, 16, 16, 2, 8, 2, 256, 4, 4, 4, 64, 2, 4, 4, 32, 2, 8, 2, 16, 16, 4, 2, 256, 8, 16, 4, 16, 2, 32, 4, 32, 4, 4, 2, 32, 2, 4, 16, 1024, 4, 8, 2, 16, 4, 8, 2, 128, 2, 4, 16, 16, 4, 8
Offset: 1
A317934 Multiplicative with a(p^n) = 2^A011371(n); denominators for certain "Dirichlet Square Roots" sequences.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1
Comments
a(n) is the denominator of certain rational valued sequences f(n), that have been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, dA034444 and A037445.
Many of the same observations as given in A046644 apply also here. Note that A011371 shares with A005187 the property that A011371(x+y) <= A011371(x) + A011371(y), with equivalence attained only when A004198(x,y) = 0, and also the property that A011371(2^(k+1)) = 1 + 2*A011371(2^k).
The following list gives such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
Expansion of Dirichlet g.f. Product_{prime} 1/(1 - 2/p^s)^(1/2) is A046643/A317934. - Vaclav Kotesovec, May 08 2025
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms)
- Wikipedia, Dirichlet convolution
Crossrefs
Programs
-
PARI
A011371(n) = (n - hammingweight(n)); A317934(n) = factorback(apply(e -> 2^A011371(e),factor(n)[,2]));
-
PARI
for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 07 2025
-
PARI
for(n=1, 100, print1(denominator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
a(n) = 2^A317946(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d 1, where b is A034444, A037445 or A046644 for example.
Sum_{k=1..n} A046643(k)/a(k) ~ n * sqrt(A167864*log(n)/(Pi*log(2))) * (1 + (4*(gamma - 1) + 5*log(2) - 4*A347195)/(8*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 08 2025
A317925 Numerators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).
1, 1, 1, 7, 2, 1, 3, 25, 5, 1, 5, 7, 6, 3, 2, 363, 8, 5, 9, 7, 3, 5, 11, 25, 8, 3, 13, 21, 14, 1, 15, 1335, 5, 4, 6, 35, 18, 9, 6, 25, 20, 3, 21, 35, 5, 11, 23, 363, 33, 4, 8, 21, 26, 13, 10, 75, 9, 7, 29, 7, 30, 15, 15, 9923, 12, 5, 33, 7, 11, 3, 35, 125, 36, 9, 8, 63, 15, 3, 39, 363, 139, 10, 41, 21, 16, 21, 14, 125, 44, 5, 18, 77, 15, 23
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Numerator @ Array[f, 100] (* Amiram Eldar, Dec 12 2022 *)
-
PARI
A317925perA317926(n) = if(1==n,n,(eulerphi(n)-sumdiv(n,d,if((d>1)&&(d
A317925perA317926(d)*A317925perA317926(n/d),0)))/2); A317925(n) = numerator(A317925perA317926(n)); -
PARI
\\ Memoized implementation: memo = Map(); A317925perA317926(n) = if(1==n,n,if(mapisdefined(memo,n),mapget(memo,n),my(v = (eulerphi(n)-sumdiv(n,d,if((d>1)&&(d
A317925perA317926(d)*A317925perA317926(n/d),0)))/2); mapput(memo,n,v); (v))); -
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, ((1-X)/(1-p*X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A317925(k) / A317926(k) ~ Pi^(-3/2) * n^2 * sqrt(3/(2*log(n))) * (1 + (1/2 - gamma/2 + 3*zeta'(2)/Pi^2) / (2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 10 2025
A318318 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A173557.
1, 2, 1, 8, 1, 2, 1, 16, 2, 1, 1, 8, 1, 2, 1, 128, 1, 4, 1, 4, 1, 2, 1, 16, 1, 1, 2, 8, 1, 1, 1, 256, 1, 1, 1, 16, 1, 2, 1, 8, 1, 2, 1, 8, 1, 2, 1, 128, 2, 1, 1, 4, 1, 4, 1, 16, 1, 1, 1, 4, 1, 2, 2, 1024, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 8, 1, 1, 1, 64, 8, 1, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 4, 2, 1, 1, 1, 1, 8, 1
Offset: 1
Comments
Not multiplicative because A318317 contains zeros.
Differs from A317926 at n = 200, 400, 600, 800, 900, 1200, 1400, 1600, 1800, 2200, 2400, 2700, 2800, 3200, 3600, 3800, 4050, 4200, 4400, 4600, 4800, 4900, 5200, ..., which seem to be a subsequence of positions of zeros in A318317.
Here a(200) = 1, while A317926(200) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Denominator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
-
PARI
up_to = 16384; A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557 DirSqrt(v) = {my(n=#v, u=vector(nA173557)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318317_18 = DirSqrt(vector(up_to, n, A173557(n))); A318318(n) = denominator(v318317_18[n]);
Formula
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
Comments
Links
Crossrefs
Programs
Mathematica
PARI
PARI
PARI
Scheme
Formula