cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 7, 1, 3, 3, 35, 1, 7, 1, 7, 3, 3, 1, 11, 3, 3, 5, 7, 1, 3, 1, 63, 3, 3, 3, 9, 1, 3, 3, 11, 1, 3, 1, 7, 7, 3, 1, 75, 3, 7, 3, 7, 1, 11, 3, 11, 3, 3, 1, 1, 1, 3, 7, 231, 3, 3, 1, 7, 3, 3, 1, 19, 1, 3, 7, 7, 3, 3, 1, 75, 35, 3, 1, 1, 3, 3, 3, 11, 1, 1, 3, 7, 3, 3, 3, 133, 1, 7, 7, 9, 1, 3, 1, 11, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

The first negative term is a(210) = -7.

Crossrefs

Programs

  • PARI
    A317937aux(n) = if(1==n,n,(omega(n)-sumdiv(n,d,if((d>1)&&(dA317937aux(d)*A317937aux(n/d),0)))/2);
    A317937(n) = numerator(A317937aux(n));
    
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dAndrew Howroyd, Aug 13 2018

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d 1.

A317846 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A051953 (cototient of n) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, 7, 1, 7, 1, 25, 11, 11, 1, 43, 1, 15, 13, 363, 1, 71, 1, 67, 17, 23, 1, 139, 19, 27, 61, 91, 1, 57, 1, 1335, 25, 35, 21, 365, 1, 39, 29, 215, 1, 81, 1, 139, 131, 47, 1, 1875, 27, 199, 37, 163, 1, 367, 29, 291, 41, 59, 1, 235, 1, 63, 171, 9923, 33, 129, 1, 211, 49, 137, 1, 1055, 1, 75, 235, 235, 33, 153, 1, 2883, 1363, 83, 1, 335, 41
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

The first negative term is a(420) = -1269.

Crossrefs

Cf. A051953, A063524, A046644 (denominators).
Cf. also A317845, A317925.

Programs

  • PARI
    A317846aux(n) = if(1==n,n,((n-eulerphi(n))-sumdiv(n,d,if((d>1)&&(dA317846aux(d)*A317846aux(n/d),0)))/2);
    A317846(n) = numerator(A317846aux(n));
    
  • PARI
    \\ Memoized implementation:
    memo317846 = Map();
    A317846aux(n) = if(1==n,n,if(mapisdefined(memo317846,n),mapget(memo317846,n),my(v = ((n-eulerphi(n))-sumdiv(n,d,if((d>1)&&(dA317846aux(d)*A317846aux(n/d),0)))/2); mapput(memo317846,n,v); (v)));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A051953(n) - Sum_{d|n, d>1, d 1.

A317926 Denominators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 2, 1, 1, 8, 1, 2, 1, 128, 1, 4, 1, 4, 1, 2, 1, 16, 1, 1, 2, 8, 1, 1, 1, 256, 1, 1, 1, 16, 1, 2, 1, 8, 1, 2, 1, 8, 1, 2, 1, 128, 2, 1, 1, 4, 1, 4, 1, 16, 1, 1, 1, 4, 1, 2, 2, 1024, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 8, 1, 1, 1, 64, 8, 1, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 4, 2, 1, 1, 1, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Crossrefs

Cf. A000010, A317925 (numerators).
Cf. also A046644, A317832.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Denominator @ Array[f, 100] (* Amiram Eldar, Dec 12 2022 *)
  • PARI
    A317925perA317926(n) = if(1==n,n,(eulerphi(n)-sumdiv(n,d,if((d>1)&&(dA317925perA317926(d)*A317925perA317926(n/d),0)))/2);
    A317926(n) = denominator(A317925perA317926(n));
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, ((1-X)/(1-p*X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d 1.

A317933 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A034444 (number of unitary divisors of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

Multiplicative because A034444 is.
The first 2^20 terms are positive. Is the sequence nonnegative?
Records seem to be A001790, occurring at A000302 (apart from 4).

Crossrefs

Cf. A001790, A034444, A317934 (denominators).

Programs

  • PARI
    A034444(n) = (2^omega(n));
    A317933perA317934(n) = if(1==n,n,(A034444(n)-sumdiv(n,d,if((d>1)&&(dA317933perA317934(d)*A317933perA317934(n/d),0)))/2);
    A317933(n) = numerator(A317933perA317934(n));
    
  • PARI
    up_to = 65537;
    \\ Faster:
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v317933aux = DirSqrt(vector(up_to, n, A034444(n)));
    A317933(n) = numerator(v317933aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A034444(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A317933(k) / A317934(k) ~ sqrt(6)*n/Pi. - Vaclav Kotesovec, May 10 2025

A317938 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A001222 (bigomega n) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 17, 7, 3, 1, 11, 1, 3, 3, 139, 1, 11, 1, 11, 3, 3, 1, 15, 7, 3, 17, 11, 1, 3, 1, 263, 3, 3, 3, 17, 1, 3, 3, 15, 1, 3, 1, 11, 11, 3, 1, 83, 7, 11, 3, 11, 1, 15, 3, 15, 3, 3, 1, -3, 1, 3, 11, 995, 3, 3, 1, 11, 3, 3, 1, 11, 1, 3, 11, 11, 3, 3, 1, 83, 139, 3, 1, -3, 3, 3, 3, 15, 1, -3, 3, 11, 3, 3, 3, 189, 1, 11, 11, 17, 1, 3, 1, 15, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Crossrefs

Cf. A001222, A063524, A046644 (denominators).

Programs

  • PARI
    A317938aux(n) = if(1==n,n,(bigomega(n)-sumdiv(n,d,if((d>1)&&(dA317938aux(d)*A317938aux(n/d),0)))/2);
    A317938(n) = numerator(A317938aux(n));
    
  • PARI
    \\ Memoized implementation:
    memo317938 = Map();
    A317938aux(n) = if(1==n,n,if(mapisdefined(memo317938,n),mapget(memo317938,n),my(v = (bigomega(n)-sumdiv(n,d,if((d>1)&&(dA317938aux(d)*A317938aux(n/d),0)))/2); mapput(memo317938,n,v); (v)));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001222(n) - Sum_{d|n, d>1, d 1.

A318317 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 3, 5, 1, 1, 5, 3, 6, 3, 2, 35, 8, 1, 9, 3, 3, 5, 11, 5, 0, 3, 1, 9, 14, 1, 15, 63, 5, 4, 6, 3, 18, 9, 6, 5, 20, 3, 21, 15, 1, 11, 23, 35, -3, 0, 8, 9, 26, 1, 10, 15, 9, 7, 29, 3, 30, 15, 3, 231, 12, 5, 33, 3, 11, 3, 35, 5, 36, 9, 0, 27, 15, 3, 39, 35, 3, 10, 41, 9, 16, 21, 14, 25, 44, 1, 18, 33, 15, 23, 18, 63, 48, -3, 5, 0, 50, 4, 51, 15, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Crossrefs

Cf. A173557, A318318 (denominators).
Cf. also A317925, A317935.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 16384;
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
    A318317(n) = numerator(v318317_18[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025: (Start)
Let f(s) = Product_{p prime} (1 - 2/(p + p^s)).
Sum_{k=1..n} A318317(k) / A318318(k) ~ n^2 * sqrt(f(2)/(4*Pi*log(n))) * (1 + (1 - gamma - f'(2)/f(2) + 6*zeta'(2)/Pi^2) / (4*log(n))), where
f(2) = A307868 = Product_{p prime} (1 - 2/(p*(p+1))) = 0.471680613612997868...
f'(2)/f(2) = Sum_{p prime} 2*p*log(p) / ((p+1)*(p^2+p-2)) = 0.7254208328519472161058521308839896283514823... and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-6 of 6 results.