A317929 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A235199, which is a multiplicative permutation of natural numbers.
1, 1, 3, 3, 7, 3, 5, 5, 27, 7, 17, 9, 13, 5, 21, 35, 11, 27, 19, 21, 15, 17, 23, 15, 147, 13, 135, 15, 43, 21, 59, 63, 51, 11, 35, 81, 37, 19, 39, 35, 41, 15, 29, 51, 189, 23, 73, 105, 75, 147, 33, 39, 53, 135, 119, 25, 57, 43, 31, 63, 61, 59, 135, 231, 91, 51, 67, 33, 69, 35, 107, 135, 47, 37, 441, 57, 85, 39
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
PARI
up_to = 16384; A235199(n) = if(n<=4,n,my(f = factor(n)); for(i=1, #f~, if(5==f[i,1], f[i,1] += 2, if(7==f[i,1], f[i,1] -= 2, my(k=primepi(f[i,1])); if(k>4, f[i,1] = prime(A235199(k)))))); factorback(f)); DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317929aux = DirSqrt(vector(up_to, n, A235199(n))); A317929(n) = numerator(v317929aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A235199(n) - Sum_{d|n, d>1, d 1.
Comments