A317930 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A234840, which is a multiplicative permutation of natural numbers.
1, 3, 1, 27, 19, 3, 61, 135, 3, 57, 11, 27, 281, 183, 19, 2835, 101, 9, 5, 513, 61, 33, 263, 135, 1083, 843, 5, 1647, 29, 57, 59, 15309, 11, 303, 1159, 81, 1811, 15, 281, 2565, 1091, 183, 157, 297, 57, 789, 409, 2835, 11163, 3249, 101, 7587, 541, 15, 209, 8235, 5, 87, 31, 513, 7, 177, 183, 168399, 5339, 33, 1013, 2727
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
PARI
up_to = 16384; A234840(n) = if(n<=1,n,my(f = factor(n)); for(i=1, #f~, if(2==f[i,1], f[i,1]++, if(3==f[i,1], f[i,1]--, f[i,1] = prime(-1+A234840(1+primepi(f[i,1])))))); factorback(f)); \\ Antti Karttunen, Aug 23 2018 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317930aux = DirSqrt(vector(up_to, n, A234840(n))); A317930(n) = numerator(v317930aux[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A234840(n) - Sum_{d|n, d>1, d 1.
Comments