A317933 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A034444 (number of unitary divisors of n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
Crossrefs
Programs
-
PARI
A034444(n) = (2^omega(n)); A317933perA317934(n) = if(1==n,n,(A034444(n)-sumdiv(n,d,if((d>1)&&(d
A317933perA317934(d)*A317933perA317934(n/d),0)))/2); A317933(n) = numerator(A317933perA317934(n)); -
PARI
up_to = 65537; \\ Faster: DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v317933aux = DirSqrt(vector(up_to, n, A034444(n))); A317933(n) = numerator(v317933aux[n]); -
PARI
for(n=1, 100, print1(numerator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A034444(n) - Sum_{d|n, d>1, d 1.
Comments