cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317938 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A001222 (bigomega n) + A063524 (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 17, 7, 3, 1, 11, 1, 3, 3, 139, 1, 11, 1, 11, 3, 3, 1, 15, 7, 3, 17, 11, 1, 3, 1, 263, 3, 3, 3, 17, 1, 3, 3, 15, 1, 3, 1, 11, 11, 3, 1, 83, 7, 11, 3, 11, 1, 15, 3, 15, 3, 3, 1, -3, 1, 3, 11, 995, 3, 3, 1, 11, 3, 3, 1, 11, 1, 3, 11, 11, 3, 3, 1, 83, 139, 3, 1, -3, 3, 3, 3, 15, 1, -3, 3, 11, 3, 3, 3, 189, 1, 11, 11, 17, 1, 3, 1, 15, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Crossrefs

Cf. A001222, A063524, A046644 (denominators).

Programs

  • PARI
    A317938aux(n) = if(1==n,n,(bigomega(n)-sumdiv(n,d,if((d>1)&&(dA317938aux(d)*A317938aux(n/d),0)))/2);
    A317938(n) = numerator(A317938aux(n));
    
  • PARI
    \\ Memoized implementation:
    memo317938 = Map();
    A317938aux(n) = if(1==n,n,if(mapisdefined(memo317938,n),mapget(memo317938,n),my(v = (bigomega(n)-sumdiv(n,d,if((d>1)&&(dA317938aux(d)*A317938aux(n/d),0)))/2); mapput(memo317938,n,v); (v)));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001222(n) - Sum_{d|n, d>1, d 1.