A318046 a(n) is the number of initial subtrees (subtrees emanating from the root) of the unlabeled rooted tree with Matula-Goebel number n.
1, 2, 3, 2, 4, 3, 3, 2, 5, 4, 5, 3, 4, 3, 7, 2, 4, 5, 3, 4, 5, 5, 6, 3, 10, 4, 9, 3, 5, 7, 6, 2, 9, 4, 7, 5, 4, 3, 7, 4, 5, 5, 4, 5, 13, 6, 8, 3, 5, 10, 7, 4, 3, 9, 13, 3, 5, 5, 5, 7, 6, 6, 9, 2, 10, 9, 4, 4, 11, 7, 5, 5, 6, 4, 19, 3, 9, 7, 6, 4, 17, 5, 7, 5
Offset: 1
Keywords
Examples
70 is the Matula-Goebel number of the tree (o((o))(oo)), which has 7 distinct initial subtrees: {o, (ooo), (oo(oo)), (o(o)o), (o(o)(oo)), (o((o))o), (o((o))(oo))}. So a(70) = 7.
Crossrefs
Programs
-
Mathematica
si[n_]:=If[n==1,1,1+Product[si[PrimePi[b[[1]]]]^b[[2]],{b,FactorInteger[n]}]]; Array[si,100]
Formula
a(1) = 1 and if n > 1 has prime factorization n = prime(x_1)^y_1 * ... * prime(x_k)^y_k then a(n) = 1 + a(x_1)^y_1 * ... * a(x_k)^y_k.
Comments