cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007853 Number of maximal antichains in rooted plane trees on n nodes.

Original entry on oeis.org

1, 2, 5, 15, 50, 178, 663, 2553, 10086, 40669, 166752, 693331, 2917088, 12398545, 53164201, 229729439, 999460624, 4374546305, 19250233408, 85120272755, 378021050306, 1685406494673, 7541226435054, 33852474532769, 152415463629568, 688099122024944
Offset: 1

Views

Author

Keywords

Comments

Also the number of initial subtrees (emanating from the root) of rooted plane trees on n vertices, where we require that an initial subtree contains either all or none of the branchings under any given node. The leaves of such a subtree comprise the roots of a corresponding antichain cover. Also, in the (non-commutative) multicategory of free pure multifunctions with one atom, a(n) is the number of composable pairs whose composite has n positions. - Gus Wiseman, Aug 13 2018
The g.f. is denoted by y_2 in Bacher 2004 Proposition 7.5 on page 20. - Michael Somos, Nov 07 2019

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 50*x^5 + 178*x^6 + 663*x^7 + 2553*x^8 + ... - _Michael Somos_, Nov 07 2019
		

Crossrefs

Programs

  • Mathematica
    ie[t_]:=If[Length[t]==0,1,1+Product[ie[b],{b,t}]];
    allplane[n_]:=If[n==1,{{}},Join@@Function[c,Tuples[allplane/@c]]/@Join@@Permutations/@IntegerPartitions[n-1]];
    Table[Sum[ie[t],{t,allplane[n]}],{n,9}] (* Gus Wiseman, Aug 13 2018 *)
  • Maxima
    a(n):=1/(n+1)*binomial(2*n,n)+sum((k+2)/(n+1)*binomial(2*n-k-1,n-k-1)*(sum(((binomial(2*i,i))*(binomial(k+i,3*i)))/(i+1),i,0,floor(k/2))),k,0,n-1); /* Vladimir Kruchinin, Apr 05 2019 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sqrt(1 - 4*x + x * O(x^n)); polcoeff( (3 - 2*x - A - sqrt(2 - 16*x + 4*x^2 + (2 + 4*x) * A)) / 4, n))}; /* Michael Somos, Nov 07 2019 */

Formula

G.f.: (1/4) * (3 - 2*x - sqrt(1-4*x) - sqrt(2) * sqrt((1+2*x) * sqrt(1-4*x) + 1 - 8*x + 2*x^2)) [from Klazar]. - Sean A. Irvine, Feb 06 2018
a(n) = (1/(n+1))*C(2*n,n) + Sum_{k=0..n-1} ((k+2)/(n+1))*C(2*n-k-1,n-k-1)*Sum_{i=0..floor(k/2)} C(2*i,i)*C(k+i,3*i)/(i+1). - Vladimir Kruchinin, Apr 05 2019
Given the g.f. A(x) and the g.f. of A213705 B(x), then -x = A(-B(x)). - Michael Somos, Nov 07 2019

Extensions

More terms from Sean A. Irvine, Feb 06 2018

A318049 Number of first/rest balanced rooted plane trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 3, 2, 6, 8, 11, 26, 28, 67, 96, 162, 316, 448, 922, 1435, 2572, 4660, 7563, 14397, 23896, 43337, 77097, 133071, 244787, 423093, 767732, 1367412, 2426612, 4408497, 7802348, 14152342, 25365035, 45602031, 82631362, 148246136, 269103870, 485379304
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

A rooted plane tree is first/rest balanced if either (1) it is a single node, or (2a) the number of leaves in the first branch is equal to the number of branches minus one, and (2b) every branch is also first/rest balanced.
Also the number of composable free pure multifunctions (CPMs) with one atom and n positions. A CPM is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h and each of the g_i for i = 1, ..., k > 0 are CPMs, and the number of leaves in h is equal to k. The number of positions in a CPM is the number of brackets [...] plus the number of o's.

Examples

			The a(12) = 11 first/rest balanced rooted plane trees:
  (o(o(o((oo)oo))))
  (o(o((oo)(oo)o)))
  (o(o((oo)o(oo))))
  (o((oo)(o(oo))o))
  (o((oo)o(o(oo))))
  (o((oo)(oo)(oo)))
  ((oo)(o(o(oo)))o)
  ((oo)o(o(o(oo))))
  ((o(o(oo)))oooo)
  ((oo)(o(oo))(oo))
  ((oo)(oo)(o(oo)))
The a(12) = 11 composable free pure multifunctions:
  o[o[o[o[o][o,o]]]]
  o[o[o[o][o[o],o]]]
  o[o[o[o][o,o[o]]]]
  o[o[o][o[o[o]],o]]
  o[o[o][o,o[o[o]]]]
  o[o[o][o[o],o[o]]]
  o[o][o[o[o[o]]],o]
  o[o][o,o[o[o[o]]]]
  o[o][o[o[o]],o[o]]
  o[o][o[o],o[o[o]]]
  o[o[o[o]]][o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    balplane[n_]:=balplane[n]=If[n===1,{{}},Join@@Function[c,Select[Tuples[balplane/@c],Length[Cases[#[[1]],{},{0,Infinity}]]==Length[#]-1&]]/@Join@@Permutations/@IntegerPartitions[n-1]];
    Table[Length[balplane[n]],{n,10}]
  • PARI
    seq(n)={my(p=x*y+O(x^2)); for(n=1, n\2, p = x*y + x*sum(k=1, n, y^k * polcoef(p,k,y) * (O(x^(2*n-k+1)) + p)^k )); Vec(subst(p + O(x*x^n), y, 1)) } \\ Andrew Howroyd, Jan 22 2021

Formula

G.f.: A(x,1) where A(x,y) satisfies A(x,y) = x*(y + Sum_{k>=1} y^k * ([y^k] A(x,y)) * A(x,y)^k). - Andrew Howroyd, Jan 22 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 22 2021

A318048 Size of the span of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 4, 4, 2, 6, 6, 5, 4, 6, 3, 9, 2, 6, 6, 4, 6, 6, 8, 10, 4, 12, 6, 10, 4, 9, 9, 6, 2, 12, 6, 9, 6, 6, 4, 9, 6, 9, 7, 6, 8, 15, 10, 15, 4, 5, 12, 9, 7, 4, 10, 16, 4, 7, 9, 8, 9, 10, 10, 11, 2, 13, 12, 6, 7, 14, 10, 9, 6, 10, 7, 21, 3, 12, 10, 12, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

The span of a tree is defined to be the set of possible terminal subtrees of initial subtrees, or, which is the same, the set of possible initial subtrees of terminal subtrees.

Examples

			42 is the Matula-Goebel number of (o(o)(oo)), which has span {o, (o), (oo), (ooo), (oo(oo)), (o(o)o), (o(o)(oo))}, so a(42) = 7.
		

Crossrefs

Programs

  • Mathematica
    ext[c_,{}]:=c;ext[c_,s:{}]:=Extract[c,s];rpp[c_,v_,{}]:=v;rpp[c_,v_,s:{}]:=ReplacePart[c,v,s];
    RLO[ear_,rue:{}]:=Union@@(Function[x,rpp[ear,x,#2]]/@ReplaceList[ext[ear,#2],#1]&@@@Select[Tuples[{rue,Position[ear,_]}],MatchQ[ext[ear,#[[2]]],#[[1,1]]]&]);
    RL[ear_,rue:{}]:=FixedPoint[Function[keeps,Union[keeps,Join@@(RLO[#,rue]&/@keeps)]],{ear}];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGTree[n_]:=If[n==1,{},MGTree/@primeMS[n]];
    Table[Length[Union[Cases[RL[MGTree[n],{List[__List]:>List[]}],_List,{1,Infinity}]]],{n,100}]

A333267 If n = Product (p_j^k_j) then a(n) = Product (a(pi(p_j)) * k_j), where pi = A000720.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 4, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3, 4, 1, 1, 1, 5, 1, 2, 2, 4, 2, 3, 1, 3, 1, 2, 2, 2, 2, 2, 1, 4, 4, 2, 2, 2, 4, 3, 1, 6, 3, 1, 2, 2, 2, 1, 4, 6, 1, 1, 3, 4, 2, 2, 2, 6, 2, 2, 2, 6, 2, 1, 1, 4, 4, 1, 2, 4, 2, 2, 1, 3, 3, 2, 2, 4, 1, 1, 3, 5, 2, 4, 2, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 13 2020

Keywords

Examples

			a(36) = a(2^2 * 3^2) = a(prime(1)^2 * prime(2)^2) = a(1) * 2 * a(2) * 2 = 4.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          mul(a(numtheory[pi](i[1]))*i[2], i=ifactors(n)[2])
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 13 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Times @@ (a[PrimePi[#[[1]]]] #[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]

Formula

a(n) = A005361(n) * Product_{p|n, p prime} a(pi(p)).
a(n) = a(prime(n)).
a(p^k) = k * a(p), where p is prime.
a(A002110(n)) = Product_{k=1..n} a(k).
Showing 1-4 of 4 results.