cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007853 Number of maximal antichains in rooted plane trees on n nodes.

Original entry on oeis.org

1, 2, 5, 15, 50, 178, 663, 2553, 10086, 40669, 166752, 693331, 2917088, 12398545, 53164201, 229729439, 999460624, 4374546305, 19250233408, 85120272755, 378021050306, 1685406494673, 7541226435054, 33852474532769, 152415463629568, 688099122024944
Offset: 1

Views

Author

Keywords

Comments

Also the number of initial subtrees (emanating from the root) of rooted plane trees on n vertices, where we require that an initial subtree contains either all or none of the branchings under any given node. The leaves of such a subtree comprise the roots of a corresponding antichain cover. Also, in the (non-commutative) multicategory of free pure multifunctions with one atom, a(n) is the number of composable pairs whose composite has n positions. - Gus Wiseman, Aug 13 2018
The g.f. is denoted by y_2 in Bacher 2004 Proposition 7.5 on page 20. - Michael Somos, Nov 07 2019

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 50*x^5 + 178*x^6 + 663*x^7 + 2553*x^8 + ... - _Michael Somos_, Nov 07 2019
		

Crossrefs

Programs

  • Mathematica
    ie[t_]:=If[Length[t]==0,1,1+Product[ie[b],{b,t}]];
    allplane[n_]:=If[n==1,{{}},Join@@Function[c,Tuples[allplane/@c]]/@Join@@Permutations/@IntegerPartitions[n-1]];
    Table[Sum[ie[t],{t,allplane[n]}],{n,9}] (* Gus Wiseman, Aug 13 2018 *)
  • Maxima
    a(n):=1/(n+1)*binomial(2*n,n)+sum((k+2)/(n+1)*binomial(2*n-k-1,n-k-1)*(sum(((binomial(2*i,i))*(binomial(k+i,3*i)))/(i+1),i,0,floor(k/2))),k,0,n-1); /* Vladimir Kruchinin, Apr 05 2019 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sqrt(1 - 4*x + x * O(x^n)); polcoeff( (3 - 2*x - A - sqrt(2 - 16*x + 4*x^2 + (2 + 4*x) * A)) / 4, n))}; /* Michael Somos, Nov 07 2019 */

Formula

G.f.: (1/4) * (3 - 2*x - sqrt(1-4*x) - sqrt(2) * sqrt((1+2*x) * sqrt(1-4*x) + 1 - 8*x + 2*x^2)) [from Klazar]. - Sean A. Irvine, Feb 06 2018
a(n) = (1/(n+1))*C(2*n,n) + Sum_{k=0..n-1} ((k+2)/(n+1))*C(2*n-k-1,n-k-1)*Sum_{i=0..floor(k/2)} C(2*i,i)*C(k+i,3*i)/(i+1). - Vladimir Kruchinin, Apr 05 2019
Given the g.f. A(x) and the g.f. of A213705 B(x), then -x = A(-B(x)). - Michael Somos, Nov 07 2019

Extensions

More terms from Sean A. Irvine, Feb 06 2018

A102403 Number of Dyck paths of semilength n having no ascents of length 2.

Original entry on oeis.org

1, 1, 1, 2, 6, 17, 46, 128, 372, 1109, 3349, 10221, 31527, 98178, 308179, 973911, 3096044, 9894393, 31770247, 102444145, 331594081, 1077022622, 3509197080, 11466710630, 37567784437, 123380796192, 406120349756, 1339571374103
Offset: 0

Views

Author

Emeric Deutsch, Jan 06 2005

Keywords

Comments

Number of Łukasiewicz paths of length n having no (1,1) steps. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: a(4)=6 because we have HHHH, HU(2)DD, U(2)DDH, U(2)DHD, U(2)HDD and U(3)DDD where H=(1,0), U(2)=(1,2), U(3)=(1,3) and D=(1,-1).
Also the number of series-reduced Mathematica expressions with one atom and n + 1 positions. Also the number of rooted plane trees with n + 1 nodes in which there are no binary branchings (nodes of out-degree 2). - Gus Wiseman, Aug 14 2018

Examples

			a(3)=2 because we have UDUDUD and UUUDDD, where U=(1,1) and D=(1,-1); the other three Dyck paths of semilength 3, namely UD(UU)DD, (UU)DDUD and (UU)DUDD, have ascents of length 2 (shown between parentheses).
From _Gus Wiseman_, Aug 14 2018: (Start)
The a(5) = 17 series-reduced Mathematica expressions:
  o[o[][],o]
  o[o,o[][]]
  o[o[],o[]]
  o[o[],o,o]
  o[o,o[],o]
  o[o,o,o[]]
  o[o,o,o,o]
  o[][o[],o]
  o[][o,o[]]
  o[][o,o,o]
  o[][][o,o]
  o[o[],o][]
  o[o,o[]][]
  o[o,o,o][]
  o[][o,o][]
  o[o,o][][]
  o[][][][][]
The a(5) = 17 rooted plane trees with no binary branchings:
  (((((o)))))
  (((ooo)))
  (((o)oo))
  ((o(o)o))
  ((oo(o)))
  ((oooo))
  (((o))oo)
  (o((o))o)
  (oo((o)))
  ((o)(o)o)
  ((o)o(o))
  (o(o)(o))
  ((o)ooo)
  (o(o)oo)
  (oo(o)o)
  (ooo(o))
  (ooooo)
(End)
		

Crossrefs

Programs

  • Maple
    Order:=35: S:=solve(series(V*(1-V)/(1-V^2+V^3),V)=z,V): seq(coeff(S,z^n),n=1..33); # V=zG
    P:= gfun:-rectoproc({(69*n^2+207*n+138)*a(n)+(97*n^2+609*n+830)*a(n+1)+(-38*n^2-342*n-694)*a(n+2)+(37*n^2+333*n+734)*a(n+3)+(2*n^2+18*n+34)*a(n+4)+(-7*n^2-87*n-266)*a(n+5)+(n^2+15*n+56)*a(n+6), a(0)=1,a(1)=1,a(2)=1,a(3)=2,a(4)=6,a(5)=17},a(n),remember):
    seq(P(n),n=0..50); # Robert Israel, Aug 24 2015
  • Mathematica
    a[n_] := 1/(n+1) Sum[Binomial[n+1, j] Binomial[3j-n-3, j-1] (-1)^(n+1-j), {j, n+1, (n+3)/3, -1}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 21 2018, after Vladimir Kruchinin *)
  • Maxima
    a102403(n):=1/n*sum(binomial(n,j)*binomial(3*j-n-2,j-1)*(-1)^(n-j),j,ceiling((n+2)/3),n); /* Vladimir Kruchinin, Mar 07 2011 */
    
  • PARI
    Vec( serreverse( O(x^33) + x/(1+x/(1-x)-x^2) ) /x )  \\ Joerg Arndt, Apr 28 2016

Formula

G.f.: G=G(z) satisfies z^3*G^3 + z(1-z)G^2 - G + 1 = 0.
a(n) = (1/n)*Sum_{j=ceiling((n+2)/3)..n} binomial(n,j)*binomial(3*j-n-2,j-1)*(-1)^(n-j), n > 0. - Vladimir Kruchinin, Mar 07 2011
From Gary W. Adamson, Jan 30 2012: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 0, 1, 1, 0, 0, ...
1, 1, 0, 1, 1, 0, ...
1, 1, 1, 0, 1, 1, ... (End)
(69*n^2+207*n+138)*a(n) + (97*n^2+609*n+830)*a(n+1) + (-38*n^2-342*n-694)*a(n+2) + (37*n^2+333*n+734)*a(n+3) + (2*n^2+18*n+34)*a(n+4) + (-7*n^2-87*n-266)*a(n+5) + (n^2+15*n+56)*a(n+6) = 0. - Robert Israel, Aug 24 2015
Recurrence (of order 4): (n+1)*(n+2)*(28*n^2 - 32*n - 39)*a(n) = 4*(n+1)*(14*n^3 - 9*n^2 - 62*n + 39)*a(n-1) + (140*n^4 - 160*n^3 - 401*n^2 + 469*n - 78)*a(n-2) - 12*(n-2)*(14*n^3 - 9*n^2 - 28*n - 8)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 24*n - 43)*a(n-4). - Vaclav Kotesovec, Mar 06 2016
a(n) ~ s * sqrt((1 - 2*r + 3*r^2*s)/(1 - r + 3*r^2*s)) /(2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.2869905464691794898... and s = 1.850270202250705342... are roots of the system of equations 3*r^3*s^2 = 1 + 2*(-1 + r)*r*s, 1 + r^3*s^3 = s + (-1 + r)*r*s^2. - Vaclav Kotesovec, Mar 06 2016

A303022 Number of free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and no unitary parts (subexpressions of the form x[y]).

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 27, 63, 152, 376, 939, 2371, 6047, 15577, 40429, 105637, 277625, 733518, 1947126, 5190503, 13888811, 37291968, 100444019, 271316998, 734802247, 1994873116, 5427893149, 14799525982, 40429761365, 110645688034, 303316712450, 832799212777
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Comments

Also the number of orderless Mathematica expressions with one atom, n positions, and no unitary parts.

Examples

			The a(6) = 12 Mathematica expressions:
  o[o,o[][]]
  o[o[],o[]]
  o[o,o,o[]]
  o[o,o,o,o]
  o[][o,o[]]
  o[][o,o,o]
  o[][][o,o]
  o[o,o[]][]
  o[o,o,o][]
  o[][o,o][]
  o[o,o][][]
  o[][][][][]
		

Crossrefs

Programs

  • Mathematica
    allOLBF[n_]:=allOLBF[n]=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allOLBF[h],Select[Union[Sort/@Tuples[allOLBF/@p]],Length[#]!=1&]}],{p,IntegerPartitions[g]}]]];
    Table[Length[allOLBF[n]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018

A303027 Number of free pure symmetric multifunctions with one atom, n positions, and no empty or unitary parts (subexpressions of the form x[] or x[y]).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 5, 7, 15, 28, 47, 90, 175, 319, 607, 1181, 2251, 4325, 8449, 16425, 31992, 62823, 123521, 243047, 480316, 951290, 1886293, 3749341, 7467815, 14893500, 29752398, 59532947, 119274491, 239275400, 480638121, 966571853, 1945901716, 3921699524
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Comments

Also the number of orderless Mathematica expressions with one atom, n positions, and no empty or unitary parts.

Examples

			The a(10) = 15 Mathematica expressions:
  o[o,o[o,o[o,o]]]
  o[o,o[o,o][o,o]]
  o[o[o,o],o[o,o]]
  o[o,o][o,o[o,o]]
  o[o,o[o,o]][o,o]
  o[o,o][o,o][o,o]
  o[o,o[o,o,o,o,o]]
  o[o,o,o[o,o,o,o]]
  o[o,o,o,o[o,o,o]]
  o[o,o,o,o,o[o,o]]
  o[o,o][o,o,o,o,o]
  o[o,o,o][o,o,o,o]
  o[o,o,o,o][o,o,o]
  o[o,o,o,o,o][o,o]
  o[o,o,o,o,o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    allOLZR[n_]:=allOLZR[n]=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allOLZR[h],Select[Union[Sort/@Tuples[allOLZR/@p]],Length[#]>1&]}],{p,IntegerPartitions[g]}]]];
    Table[Length[allOLZR[n]],{n,25}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)-v); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018

Extensions

Terms a(29) and beyond from Andrew Howroyd, Aug 19 2018
Showing 1-4 of 4 results.