cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318049 Number of first/rest balanced rooted plane trees with n nodes.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 3, 2, 6, 8, 11, 26, 28, 67, 96, 162, 316, 448, 922, 1435, 2572, 4660, 7563, 14397, 23896, 43337, 77097, 133071, 244787, 423093, 767732, 1367412, 2426612, 4408497, 7802348, 14152342, 25365035, 45602031, 82631362, 148246136, 269103870, 485379304
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

A rooted plane tree is first/rest balanced if either (1) it is a single node, or (2a) the number of leaves in the first branch is equal to the number of branches minus one, and (2b) every branch is also first/rest balanced.
Also the number of composable free pure multifunctions (CPMs) with one atom and n positions. A CPM is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h and each of the g_i for i = 1, ..., k > 0 are CPMs, and the number of leaves in h is equal to k. The number of positions in a CPM is the number of brackets [...] plus the number of o's.

Examples

			The a(12) = 11 first/rest balanced rooted plane trees:
  (o(o(o((oo)oo))))
  (o(o((oo)(oo)o)))
  (o(o((oo)o(oo))))
  (o((oo)(o(oo))o))
  (o((oo)o(o(oo))))
  (o((oo)(oo)(oo)))
  ((oo)(o(o(oo)))o)
  ((oo)o(o(o(oo))))
  ((o(o(oo)))oooo)
  ((oo)(o(oo))(oo))
  ((oo)(oo)(o(oo)))
The a(12) = 11 composable free pure multifunctions:
  o[o[o[o[o][o,o]]]]
  o[o[o[o][o[o],o]]]
  o[o[o[o][o,o[o]]]]
  o[o[o][o[o[o]],o]]
  o[o[o][o,o[o[o]]]]
  o[o[o][o[o],o[o]]]
  o[o][o[o[o[o]]],o]
  o[o][o,o[o[o[o]]]]
  o[o][o[o[o]],o[o]]
  o[o][o[o],o[o[o]]]
  o[o[o[o]]][o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    balplane[n_]:=balplane[n]=If[n===1,{{}},Join@@Function[c,Select[Tuples[balplane/@c],Length[Cases[#[[1]],{},{0,Infinity}]]==Length[#]-1&]]/@Join@@Permutations/@IntegerPartitions[n-1]];
    Table[Length[balplane[n]],{n,10}]
  • PARI
    seq(n)={my(p=x*y+O(x^2)); for(n=1, n\2, p = x*y + x*sum(k=1, n, y^k * polcoef(p,k,y) * (O(x^(2*n-k+1)) + p)^k )); Vec(subst(p + O(x*x^n), y, 1)) } \\ Andrew Howroyd, Jan 22 2021

Formula

G.f.: A(x,1) where A(x,y) satisfies A(x,y) = x*(y + Sum_{k>=1} y^k * ([y^k] A(x,y)) * A(x,y)^k). - Andrew Howroyd, Jan 22 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 22 2021