A318049 Number of first/rest balanced rooted plane trees with n nodes.
1, 0, 1, 0, 1, 1, 1, 3, 2, 6, 8, 11, 26, 28, 67, 96, 162, 316, 448, 922, 1435, 2572, 4660, 7563, 14397, 23896, 43337, 77097, 133071, 244787, 423093, 767732, 1367412, 2426612, 4408497, 7802348, 14152342, 25365035, 45602031, 82631362, 148246136, 269103870, 485379304
Offset: 1
Keywords
Examples
The a(12) = 11 first/rest balanced rooted plane trees: (o(o(o((oo)oo)))) (o(o((oo)(oo)o))) (o(o((oo)o(oo)))) (o((oo)(o(oo))o)) (o((oo)o(o(oo)))) (o((oo)(oo)(oo))) ((oo)(o(o(oo)))o) ((oo)o(o(o(oo)))) ((o(o(oo)))oooo) ((oo)(o(oo))(oo)) ((oo)(oo)(o(oo))) The a(12) = 11 composable free pure multifunctions: o[o[o[o[o][o,o]]]] o[o[o[o][o[o],o]]] o[o[o[o][o,o[o]]]] o[o[o][o[o[o]],o]] o[o[o][o,o[o[o]]]] o[o[o][o[o],o[o]]] o[o][o[o[o[o]]],o] o[o][o,o[o[o[o]]]] o[o][o[o[o]],o[o]] o[o][o[o],o[o[o]]] o[o[o[o]]][o,o,o,o]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
balplane[n_]:=balplane[n]=If[n===1,{{}},Join@@Function[c,Select[Tuples[balplane/@c],Length[Cases[#[[1]],{},{0,Infinity}]]==Length[#]-1&]]/@Join@@Permutations/@IntegerPartitions[n-1]]; Table[Length[balplane[n]],{n,10}]
-
PARI
seq(n)={my(p=x*y+O(x^2)); for(n=1, n\2, p = x*y + x*sum(k=1, n, y^k * polcoef(p,k,y) * (O(x^(2*n-k+1)) + p)^k )); Vec(subst(p + O(x*x^n), y, 1)) } \\ Andrew Howroyd, Jan 22 2021
Formula
G.f.: A(x,1) where A(x,y) satisfies A(x,y) = x*(y + Sum_{k>=1} y^k * ([y^k] A(x,y)) * A(x,y)^k). - Andrew Howroyd, Jan 22 2021
Extensions
Terms a(21) and beyond from Andrew Howroyd, Jan 22 2021
Comments