cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318110 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

0, 1, 1, 3, 3, 1, 26, 26, 11, 2, 367, 367, 167, 42, 5, 7142, 7142, 3352, 944, 163, 14, 176766, 176766, 84308, 25006, 4965, 638, 42, 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132, 186954535, 186954535, 90600599, 28120586, 6200455, 1010814, 121086, 9908, 429, 7566084686, 7566084686, 3683084984, 1156456088, 261067596, 44535120, 5829880, 574128, 39203, 1430
Offset: 0

Views

Author

Gheorghe Coserea, Sep 05 2018

Keywords

Examples

			A(x,t) = (1+t)*x + (3+3*t+t^2)*x^2 + (26+26*t+11*t^2+2*t^3)*x^3 + ...
Triangle starts:
n\k [0]       [1]       [2]      [3]      [4]     [5]     [6]    [7]  [8]
[0] 0;
[1] 1,        1;
[2] 3,        3,        1;
[3] 26,       26,       11,      2;
[4] 367,      367,      167,     42,      5;
[5] 7142,     7142,     3352,    944,     163,    14;
[6] 176766,   176766,   84308,   25006,   4965,   638,    42;
[7] 5304356,  5304356,  2554329, 779246,  165474, 24924,  2510,  132;
[8] 186954535,186954535,90600599,28120586,6200455,1010814,121086,9908,429;
[9] ...
		

Crossrefs

Column 0 gives A262301.
Main diagonal gives A000108(n-1) for n>0.
Second diagonal gives A032443(n-1) for n>0.

Programs

  • Mathematica
    rows = 10; Clear[A]; A[x_, t_] = (1+t)x;
    Do[A[x_, t_] = Series[x t/(1-A[x, t]) + D[A[x, t], t], {x, 0, n}, {t, 0, n}] // Normal, {n, 2 rows}];
    CoefficientList[#, t]& /@ CoefficientList[A[x, t], x] /. {} -> {0} // Take[#, rows]& // Flatten (* Jean-François Alcover, Oct 23 2018 *)
  • PARI
    seq(N) = {
      my(x='x+O('x^N), t='t, F0=(1+t)*x, F1=0, n=1);
      while(n++,
        F1 = F0^2; F1 = F1 - deriv(F1,'t)/2 + deriv(F0,'t) + x*t;
        if (F1 == F0, break()); F0 = F1);
      concat([[0]], apply(Vecrev, Vec(F0)));
    };
    concat(seq(10))
    \\ test: y=Ser(apply(p->Polrev(p,'t), seq(101)), 'x); y == x*'t/(1-y) + deriv(y,'t)

Formula

A(x,t) = Sum_{n>=0} P_n(t)*x^n, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, satisfies:
A = x*t/(1-A) + deriv(A,t), with A(0,t) = 0, deriv(A,x)(0,t) = 1+t (deriv(A,v) represents the derivative of A with respect to variable v).