A318110 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
0, 1, 1, 3, 3, 1, 26, 26, 11, 2, 367, 367, 167, 42, 5, 7142, 7142, 3352, 944, 163, 14, 176766, 176766, 84308, 25006, 4965, 638, 42, 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132, 186954535, 186954535, 90600599, 28120586, 6200455, 1010814, 121086, 9908, 429, 7566084686, 7566084686, 3683084984, 1156456088, 261067596, 44535120, 5829880, 574128, 39203, 1430
Offset: 0
Examples
A(x,t) = (1+t)*x + (3+3*t+t^2)*x^2 + (26+26*t+11*t^2+2*t^3)*x^3 + ... Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [0] 0; [1] 1, 1; [2] 3, 3, 1; [3] 26, 26, 11, 2; [4] 367, 367, 167, 42, 5; [5] 7142, 7142, 3352, 944, 163, 14; [6] 176766, 176766, 84308, 25006, 4965, 638, 42; [7] 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132; [8] 186954535,186954535,90600599,28120586,6200455,1010814,121086,9908,429; [9] ...
Links
- Gheorghe Coserea, Rows n=0..100, flattened
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
Crossrefs
Programs
-
Mathematica
rows = 10; Clear[A]; A[x_, t_] = (1+t)x; Do[A[x_, t_] = Series[x t/(1-A[x, t]) + D[A[x, t], t], {x, 0, n}, {t, 0, n}] // Normal, {n, 2 rows}]; CoefficientList[#, t]& /@ CoefficientList[A[x, t], x] /. {} -> {0} // Take[#, rows]& // Flatten (* Jean-François Alcover, Oct 23 2018 *)
-
PARI
seq(N) = { my(x='x+O('x^N), t='t, F0=(1+t)*x, F1=0, n=1); while(n++, F1 = F0^2; F1 = F1 - deriv(F1,'t)/2 + deriv(F0,'t) + x*t; if (F1 == F0, break()); F0 = F1); concat([[0]], apply(Vecrev, Vec(F0))); }; concat(seq(10)) \\ test: y=Ser(apply(p->Polrev(p,'t), seq(101)), 'x); y == x*'t/(1-y) + deriv(y,'t)
Formula
A(x,t) = Sum_{n>=0} P_n(t)*x^n, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, satisfies:
A = x*t/(1-A) + deriv(A,t), with A(0,t) = 0, deriv(A,x)(0,t) = 1+t (deriv(A,v) represents the derivative of A with respect to variable v).