cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A322549 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(n,k) is the constant term in the expansion of (Sum_{j=0..n} j*(x^j + x^(-j)))^k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 10, 0, 1, 0, 6, 12, 28, 0, 1, 0, 0, 198, 84, 60, 0, 1, 0, 20, 560, 2076, 324, 110, 0, 1, 0, 0, 5020, 14240, 12060, 924, 182, 0, 1, 0, 70, 20580, 213460, 146680, 49170, 2184, 280, 0, 1, 0, 0, 144774, 1984584, 3479700, 922680, 158418, 4536, 408, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Dec 15 2018

Keywords

Examples

			Square array begins:
   1, 0,   0,    0,      0,       0,         0, ...
   1, 0,   2,    0,      6,       0,        20, ...
   1, 0,  10,   12,    198,     560,      5020, ...
   1, 0,  28,   84,   2076,   14240,    213460, ...
   1, 0,  60,  324,  12060,  146680,   3479700, ...
   1, 0, 110,  924,  49170,  922680,  32108060, ...
   1, 0, 182, 2184, 158418, 4226040, 203474180, ...
		

Crossrefs

Main diagonal gives A318793.
Cf. A201552.

Programs

  • Mathematica
    A[0, 0] = 1; A[n_, k_] :=  Coefficient[Expand[Sum[j * (x^j + x^(-j)), {j, 0, n}]^k], x, 0]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    T(n,k) = my(t=sum(j=0, n, j*(x^j + x^(-j)))^k); polcoef(numerator(t), poldegree(denominator(t))); \\ Michel Marcus, Dec 17 2018
Showing 1-1 of 1 results.