A318120 Number of set partitions of {1,...,n} with relatively prime block sizes.
1, 1, 1, 4, 11, 51, 162, 876, 3761, 20782, 109293, 678569, 4038388, 27644436, 186524145, 1379760895, 10323844183, 82864869803, 674798169662, 5832742205056, 51385856585637, 474708148273586, 4486977535287371, 44152005855084345, 444577220573083896
Offset: 0
Keywords
Examples
The a(4) = 11 set partitions: {{1},{2},{3},{4}} {{1},{2},{3,4}} {{1},{2,3},{4}} {{1},{2,4},{3}} {{1,2},{3},{4}} {{1,3},{2},{4}} {{1,4},{2},{3}} {{1},{2,3,4}} {{1,2,3},{4}} {{1,2,4},{3}} {{1,3,4},{2}}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, `if`(t<2, 1, 0), add(b(n-j, igcd(t, j))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # Alois P. Heinz, Dec 30 2019
-
Mathematica
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn]; Table[Total[numSetPtnsOfType/@Select[IntegerPartitions[n],GCD@@#==1&]],{n,10}] (* Second program: *) b[n_, t_] := b[n, t] = If[n == 0, If[t < 2, 1, 0], Sum[b[n - j, GCD[t, j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; a[n_] := b[n, 0]; a /@ Range[0, 25] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Formula
a(n) = Sum_{|y| = n, GCD(y) = 1} n! / (Product_i y_i! * Product_i (y)_i!) where the sum is over all relatively prime integer partitions of n and (y)_i is the multiplicity of i in y.