A318149 e-numbers of free pure symmetric multifunctions with one atom.
1, 4, 16, 36, 128, 256, 441, 1296, 2025, 16384, 21025, 65536, 77841, 194481, 220900, 279936, 1679616, 1803649, 4100625, 4338889, 268435456, 273571600, 442050625, 449482401, 1801088541, 4294967296, 4334247225, 6059221281
Offset: 1
Keywords
Examples
The sequence of free pure symmetric multifunctions with one atom "o", together with their e-numbers begins: 1: o 4: o[o] 16: o[o,o] 36: o[o][o] 128: o[o[o]] 256: o[o,o,o] 441: o[o,o][o] 1296: o[o][o,o] 2025: o[o][o][o] 16384: o[o,o[o]] 21025: o[o[o]][o] 65536: o[o,o,o,o] 77841: o[o,o,o][o] 194481: o[o,o][o,o] 220900: o[o,o][o][o] 279936: o[o][o[o]]
Links
- Charlie Neder, Table of n, a(n) for n = 1..310
- Charlie Neder, Python program for calculating this sequence
Crossrefs
Programs
-
Mathematica
nn=1000; radQ[n_]:=If[n==1,False,GCD@@FactorInteger[n][[All,2]]==1]; rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]]; Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn]; exp[n_]:=If[n==1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]]; Select[Range[nn],FreeQ[exp[#],_[]]&]
-
Python
See Neder link.
Extensions
a(16)-a(27) from Charlie Neder, Sep 01 2018
Comments