cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318169 Composite numbers k such that sigma_2(k) - 1 is a square, where sigma_2(k) = A001157(k) is the sum of squares of divisors of k.

Original entry on oeis.org

6, 40, 136, 2696, 3352, 46976, 223736, 5509736, 1915798072
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

This property is shared with all the primes since sigma_2(p) = 1 + p^2.
The values of sqrt(sigma_2(a(n))-1) are 7, 47, 157, 3107, 3863, 54243, 257843, 6349657, 2207848187.
Are there terms not of the form 2^k * p where p is prime? - David A. Corneth, Aug 20 2018
2*10^12 < a(10) <= 44463118771144. The terms 21687324345660824, 14524130539077100050485512, 287674439504279743204606472 (and others) of the form 2^k * p can be found by solving the quadratic Diophantine equation sigma_2(2^k) * (p^2 + 1) = x^2 + 1 for appropriate values of k. - Giovanni Resta, Aug 20 2018

Crossrefs

Programs

  • Magma
    [n: n in [2..6*10^6] |not IsPrime(n) and IsSquare(DivisorSigma(2, n)-1)]; // Vincenzo Librandi, Aug 22 2018
  • Mathematica
    sQ[n_] := IntegerQ[Sqrt[n]]; aQ[n_] := CompositeQ[n] && sQ[DivisorSigma[2,n]-1]; Select[Range[10000],aQ]
  • PARI
    forcomposite(n=2, 1e15, if( issquare(sigma(n,2)-1), print1(n, ", ")))