A318173 The determinant of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n) and whose first column consists of prime(1), prime(n + 1), ..., prime(2*n - 1).
2, -11, 158, -6513, 202790, -12710761, 578257422, -45608219247, 8774909485920, -579515898830751, 115918088707226940, -16737522590543449641, 1282860173728469083872, -189053227741259934603831, 55171097827950314187327460, -16235234399834578732807710581
Offset: 1
Keywords
Examples
For n = 1 the matrix M(1) is 2 with determinant Det(M(1)) = 2. For n = 2 the matrix M(2) is 2, 3 5, 2 with Det(M(2)) = -11. For n = 3 the matrix M(3) is 2, 3, 5 7, 2, 3 11, 7, 2 with Det(M(3)) = 158.
Links
- Robert Israel, Table of n, a(n) for n = 1..302
- Wikipedia, Toeplitz Matrix
Programs
-
Maple
f:= proc(n) uses LinearAlgebra; Determinant(ToeplitzMatrix([seq(ithprime(i),i=2*n-1..n+1,-1),seq(ithprime(i),i=1..n)])) end proc: map(f, [$1..20]); # Robert Israel, Aug 30 2018
-
Mathematica
p[i_]:=Prime[i]; a[n_]:=Det[ToeplitzMatrix[Join[{p[1]},Array[p,n-1,{n+1,2*n-1}]],Array[p,n]]]; Array[a,20]
-
PARI
tm(n) = {my(m = matrix(n, n, i, j, if (i==1, prime(j), if (j==1, prime(n+i-1))))); for (i=2, n, for (j=2, n, m[i,j] = m[i-1, j-1];);); m;} a(n) = matdet(tm(n)); \\ Michel Marcus, Mar 17 2019
Comments