A318185 Number of totally transitive rooted trees with n nodes.
1, 1, 1, 2, 3, 5, 7, 12, 17, 28, 41, 65, 96, 150, 221, 342, 506, 771, 1142, 1731, 2561, 3855, 5702, 8538, 12620, 18817, 27774, 41276, 60850, 90139
Offset: 1
Examples
The a(8) = 12 totally transitive rooted trees: (o(o)(o(o))) (o(o)(o)(o)) (o(o)(ooo)) (o(oo)(oo)) (oo(o)(oo)) (ooo(o)(o)) (o(ooooo)) (oo(oooo)) (ooo(ooo)) (oooo(oo)) (ooooo(o)) (ooooooo) The a(9) = 17 totally transitive rooted trees: (o(o)(oo(o))) (oo(o)(o(o))) (o(o)(o)(oo)) (oo(o)(o)(o)) (o(o)(oooo)) (o(oo)(ooo)) (oo(o)(ooo)) (oo(oo)(oo)) (ooo(o)(oo)) (oooo(o)(o)) (o(oooooo)) (oo(ooooo)) (ooo(oooo)) (oooo(ooo)) (ooooo(oo)) (oooooo(o)) (oooooooo)
Programs
-
Mathematica
totra[n_]:=totra[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[totra/@c]],Complement[Union@@#,#]=={}&],{c,IntegerPartitions[n-1]}]]; Table[Length[totra[n]],{n,20}]
Comments