cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318185 Number of totally transitive rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 12, 17, 28, 41, 65, 96, 150, 221, 342, 506, 771, 1142, 1731, 2561, 3855, 5702, 8538, 12620, 18817, 27774, 41276, 60850, 90139
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2018

Keywords

Comments

A rooted tree is totally transitive if every branch of the root is totally transitive and every branch of a branch of the root is also a branch of the root. Unlike transitive rooted trees (A290689), every terminal subtree of a totally transitive rooted tree is itself totally transitive.

Examples

			The a(8) = 12 totally transitive rooted trees:
  (o(o)(o(o)))
  (o(o)(o)(o))
  (o(o)(ooo))
  (o(oo)(oo))
  (oo(o)(oo))
  (ooo(o)(o))
  (o(ooooo))
  (oo(oooo))
  (ooo(ooo))
  (oooo(oo))
  (ooooo(o))
  (ooooooo)
The a(9) = 17 totally transitive rooted trees:
  (o(o)(oo(o)))
  (oo(o)(o(o)))
  (o(o)(o)(oo))
  (oo(o)(o)(o))
  (o(o)(oooo))
  (o(oo)(ooo))
  (oo(o)(ooo))
  (oo(oo)(oo))
  (ooo(o)(oo))
  (oooo(o)(o))
  (o(oooooo))
  (oo(ooooo))
  (ooo(oooo))
  (oooo(ooo))
  (ooooo(oo))
  (oooooo(o))
  (oooooooo)
		

Crossrefs

Programs

  • Mathematica
    totra[n_]:=totra[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[totra/@c]],Complement[Union@@#,#]=={}&],{c,IntegerPartitions[n-1]}]];
    Table[Length[totra[n]],{n,20}]