A290689
Number of transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 143, 229, 370, 592, 955, 1527, 2457, 3929, 6304, 10081
Offset: 1
The a(7) = 8 7-node transitive rooted trees are: (o(oooo)), (oo(ooo)), (o(o)((o))), (o(o)(oo)), (ooo(oo)), (oo(o)(o)), (oooo(o)), (oooooo).
-
nn=18;
rtall[n_]:=If[n===1,{{}},Module[{cas},Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])]]];
Table[Length[Select[rtall[n],Complement[Union@@#,#]==={}&]],{n,nn}]
A324764
Number of anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1
The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
(o((o))) ((o((o)))) (o((o(o))))
((((o)))) (o(((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o)(((o))))
((o(((o)))))
(o((((o)))))
((((((o))))))
Cf.
A324694,
A324751,
A324756,
A324758,
A324765,
A324767,
A324768,
A324770,
A324839,
A324840,
A324844.
-
idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A324765
Number of recursively anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 26, 52, 119, 266, 618, 1432, 3402, 8093, 19505, 47228, 115244, 282529, 696388, 1723400
Offset: 1
The a(1) = 1 through a(6) = 11 recursively anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) (o((oo)))
((((o)))) (oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
-
nallt[n_]:=Select[Union[Sort/@Join@@(Tuples[nallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@#,#]=={}&];
Table[Length[nallt[n]],{n,10}]
A324844
Number of unlabeled rooted trees with n nodes where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 32, 71, 170, 406, 1002, 2469, 6204, 15644, 39871, 102116, 263325, 682079, 1775600, 4640220
Offset: 1
The a(1) = 1 through a(6) = 13 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (o(oo)) (o(ooo))
(((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) ((o(oo)))
((((o)))) (o((oo)))
(oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
The Matula-Goebel numbers of these trees are given by
A324845.
Cf.
A324694,
A324738,
A324744,
A324749,
A324754,
A324759,
A324765,
A324768,
A324838,
A324843,
A324846,
A324847,
A324848,
A324849.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[!submultQ[b,#],{b,DeleteCases[#,{}]}]&];
Table[Length[rallt[n]],{n,10}]
A324840
Number of fully recursively anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 14, 23, 46, 85, 165, 313, 625, 1225, 2459, 4919, 9928, 20078, 40926, 83592
Offset: 1
The a(1) = 1 through a(7) = 14 fully recursively anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
((o)) ((oo)) ((ooo)) ((oooo)) ((ooooo))
(((o))) (((oo))) (((ooo))) (((oooo)))
((o)(o)) ((o)(oo)) ((o)(ooo))
((((o)))) ((((oo)))) ((oo)(oo))
(((o)(o))) ((((ooo))))
(((((o))))) (((o))(oo))
(((o)(oo)))
((o)((oo)))
((o)(o)(o))
(((((oo)))))
((((o)(o))))
(((o))((o)))
((((((o))))))
-
dallt[n_]:=Select[Union[Sort/@Join@@(Tuples[dallt/@#]&/@IntegerPartitions[n-1])],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&];
Table[Length[dallt[n]],{n,10}]
A324768
Number of fully anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 27, 60, 152, 376, 968, 2492, 6549, 17259, 46000, 123214, 332304, 900406, 2451999, 6703925
Offset: 1
The a(1) = 1 through a(6) = 11 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
-
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]
A324838
Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1
The a(1) = 1 through a(6) = 10 rooted trees:
o ((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
Cf.
A324694,
A324696,
A324704,
A324738,
A324744,
A324758,
A324759,
A324765,
A324768,
A324771,
A324839,
A324840,
A324844,
A324846.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]
A324843
Number of unlabeled rooted trees with n nodes where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 4, 8, 9, 15, 17, 31, 35, 57, 70, 111, 136, 213, 265, 405, 517, 763, 987, 1458, 1893, 2736, 3611, 5161, 6836, 9702
Offset: 1
The a(1) = 1 through a(8) = 8 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
(o(o)) (oo(o)) (oo(oo)) (ooo(oo)) (ooo(ooo))
(ooo(o)) (oooo(o)) (oooo(oo))
(o(o)(o)) (oo(o)(o)) (ooooo(o))
(oo(o)(oo))
(ooo(o)(o))
(o(o)(o)(o))
(o(o)(o(o)))
The Matula-Goebel numbers of these trees are given by
A324842.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[submultQ[b,#],{b,#}]&];
Table[Length[rallt[n]],{n,10}]
A358453
Number of transitive ordered rooted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 17, 37, 83, 190, 444, 1051, 2518, 6090, 14852
Offset: 1
The a(1) = 1 through a(7) = 17 trees:
o (o) (oo) (ooo) (oooo) (ooooo) (oooooo)
(o(o)) (o(o)o) (o(o)oo) (o(o)ooo)
(o(oo)) (o(oo)o) (o(oo)oo)
(oo(o)) (o(ooo)) (o(ooo)o)
(oo(o)o) (o(oooo))
(oo(oo)) (oo(o)oo)
(ooo(o)) (oo(oo)o)
(o(o)(o)) (oo(ooo))
(ooo(o)o)
(ooo(oo))
(oooo(o))
(o(o)(o)o)
(o(o)(oo))
(o(o)o(o))
(o(oo)(o))
(oo(o)(o))
(o(o)((o)))
A306844 counts anti-transitive rooted trees.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Function[t,And@@Table[Complement[t[[k]],Take[t,k]]=={},{k,Length[t]}]]]],{n,10}]
A143363
Number of ordered trees with n edges and having no protected vertices. A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants.
Original entry on oeis.org
1, 1, 1, 3, 6, 17, 43, 123, 343, 1004, 2938, 8791, 26456, 80597, 247091, 763507, 2372334, 7413119, 23271657, 73376140, 232238350, 737638868, 2350318688, 7510620143, 24064672921, 77294975952, 248832007318, 802737926643
Offset: 0
From _Gus Wiseman_, Nov 19 2022: (Start)
The a(0) = 1 through a(4) = 6 trees with at least one leaf directly under any non-leaf node:
o (o) (oo) (ooo) (oooo)
((o)o) ((o)oo)
(o(o)) ((oo)o)
(o(o)o)
(o(oo))
(oo(o))
The a(0) = 1 through a(4) = 6 trees with at most one leaf directly under any node:
o (o) ((o)) ((o)o) (((o))o)
(o(o)) (((o)o))
(((o))) ((o)(o))
((o(o)))
(o((o)))
((((o))))
(End)
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Gi-Sang Cheon and Louis W. Shapiro, Protected points in ordered trees, Appl. Math. Letters, 21, 2008, 516-520.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
For exactly one leaf directly under any node we have
A006013.
Allowing lone children gives
A319378.
-
p:=z^2*G^3-2*z*G^2-2*z^2*G^2+3*z*G+G+z^2*G-1-2*z=0: G:=RootOf(p,G): Gser:= series(G,z=0,33): seq(coeff(Gser,z,n),n=0..28);
-
a[n_Integer] := a[n] = Round[SeriesCoefficient[2 (x + 1 - Sqrt[x^2 - x + 1] Cos[ArcTan[(3 x Sqrt[12 x^3 - 96 x^2 - 24 x + 15])/(2 x^3 - 30 x^2 - 3 x + 2)]/3])/(3 x), {x, 0, n}]]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Apr 10 2022 *)
RecurrenceTable[{25 (n + 5) (n + 6) a[n + 5] - 10 (n + 5) (5 n + 21) a[n + 4] - 2 (77 n^2 + 613 n + 1185) a[n + 3] + 2 (50 n^2 + 253 n + 312) a[n + 2] + 4 (2 n + 1) (7 n + 9) a[n + 1] - 4 n (2 n + 1) a[n] == 0, a[0] == 1, a[1] == 1, a[2] == 1, a[3] == 3, a[4] == 6}, a[n], {n, 0, 27}] (* Vladimir Reshetnikov, Apr 11 2022 *)
ait[n_]:=ait[n]=If[n==1,{{}},Join@@Table[Select[Tuples[ait/@c],MemberQ[#,{}]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[ait[n]],{n,15}] (* Gus Wiseman, Nov 19 2022 *)
Showing 1-10 of 24 results.
Comments