A358457 Numbers k such that the k-th standard ordered rooted tree is transitive (counted by A358453).
1, 2, 4, 7, 8, 14, 15, 16, 25, 27, 28, 30, 31, 32, 50, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 99, 100, 105, 106, 107, 108, 109, 110, 111, 112, 114, 117, 118, 119, 120, 121, 123, 124, 126, 127, 128, 198, 199, 200, 210, 211, 212, 213, 214, 215, 216, 217, 218
Offset: 1
Keywords
Examples
The terms together with their corresponding ordered trees begin: 1: o 2: (o) 4: (oo) 7: (o(o)) 8: (ooo) 14: (o(o)o) 15: (oo(o)) 16: (oooo) 25: (o(oo)) 27: (o(o)(o)) 28: (o(o)oo) 30: (oo(o)o) 31: (ooo(o)) 32: (ooooo) 50: (o(oo)o) 53: (o(o)((o))) 54: (o(o)(o)o) 55: (o(o)o(o))
Links
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; srt[n_]:=If[n==1,{},srt/@stc[n-1]]; Select[Range[100],Composition[Function[t,And@@Table[Complement[t[[k]],Take[t,k]]=={},{k,Length[t]}]],srt]]
Comments