A318186 Totally transitive numbers. Matula-Goebel numbers of totally transitive rooted trees.
1, 2, 4, 6, 8, 12, 14, 16, 18, 24, 28, 32, 36, 38, 42, 48, 54, 56, 64, 72, 76, 78, 84, 96, 98, 106, 108, 112, 114, 126, 128, 144, 152, 156, 162, 168, 192, 196, 212, 216, 222, 224, 228, 234, 252, 256, 262, 266, 288, 294, 304, 312, 318, 324, 336, 342, 366, 378
Offset: 1
Keywords
Examples
The sequence of all totally transitive rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 4: (oo) 6: (o(o)) 8: (ooo) 12: (oo(o)) 14: (o(oo)) 16: (oooo) 18: (o(o)(o)) 24: (ooo(o)) 28: (oo(oo)) 32: (ooooo) 36: (oo(o)(o)) 38: (o(ooo)) 42: (o(o)(oo)) 48: (oooo(o)) 54: (o(o)(o)(o)) 56: (ooo(oo)) 64: (oooooo) 72: (ooo(o)(o)) 76: (oo(ooo)) 78: (o(o)(o(o))) 84: (oo(o)(oo)) 96: (ooooo(o)) 98: (o(oo)(oo))
Crossrefs
Programs
-
Mathematica
subprimes[n_]:=If[n==1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]]; trmgQ[n_]:=Or[n==1,And[Divisible[n,Times@@subprimes[n]],And@@Cases[FactorInteger[n],{p_,_}:>trmgQ[PrimePi[p]]]]]; Select[Range[100],trmgQ]
Comments