cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318226 Number of inequivalent leaf-colorings of rooted trees with n nodes.

Original entry on oeis.org

1, 1, 3, 8, 25, 80, 286, 1070, 4280, 17946, 78907, 361248, 1718001, 8456130, 42980034, 225066289, 1212028798, 6701265897, 37986122037, 220477639797, 1308833637621, 7938564964369, 49151551028767, 310388888456536, 1997635594602629, 13093695854320203, 87349973125826943
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Examples

			Inequivalent representatives of the a(5) = 25 leaf-colorings:
(1111) (11(1)) (1(11)) ((111)) ((1)(1)) (1((1))) ((1(1))) (((11))) ((((1))))
(1112) (11(2)) (1(12)) ((112)) ((1)(2)) (1((2))) ((1(2))) (((12)))
(1122) (12(1)) (1(22)) ((123))
(1123) (12(3)) (1(23))
(1234)
		

Crossrefs

Programs

  • Mathematica
    undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]];
    expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Rule@@@Table[{(undats[m])[[i]],i},{i,Length[undats[m]]}]],First[Sort[expnorm[m,1]]]]];expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#>=aft&]}]},Union@@(expnorm[#,aft+1]&/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,[__]]],{par,First/@Position[mx,Max[mx]]}]])]];
    urt[n_]:=urt[n]=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[urt/@c]],{c,IntegerPartitions[n-1]}]];
    slip[e_,l_,q_]:=ReplacePart[e,Rule@@@Transpose[{Position[e,l],q}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Join@@Table[Union[expnorm/@Table[slip[tree,{},seq],{seq,Join@@Permutations/@allnorm[Count[tree,{},{0,Infinity},Heads->True]]}]],{tree,urt[n]}]],{n,7}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(Z=x*sv(1), p = Z + O(x^2)); for(n=2, n, p = Z-x + x*sEulerT(p)); p}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 10 2020