A318231
Number of inequivalent leaf-colorings of series-reduced rooted trees with n nodes.
Original entry on oeis.org
1, 0, 2, 3, 9, 23, 73, 229, 796, 2891, 11118, 44695, 187825, 820320, 3716501, 17413308, 84209071, 419461933, 2148673503, 11301526295, 60956491070, 336744177291, 1903317319015, 10995856040076, 64873456288903, 390544727861462, 2397255454976268, 14993279955728851
Offset: 1
Inequivalent representatives of the a(6) = 23 leaf-colorings:
(11(11)) (1(111)) (11111)
(11(12)) (1(112)) (11112)
(11(22)) (1(122)) (11122)
(11(23)) (1(123)) (11123)
(12(11)) (1(222)) (11223)
(12(12)) (1(223)) (11234)
(12(13)) (1(234)) (12345)
(12(33))
(12(34))
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(concat(v[1..n-2], [0]))), n-1 )); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
A318227
Number of inequivalent leaf-colorings of rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 3, 5, 14, 38, 114, 330, 1054, 3483, 11841, 41543, 149520, 552356, 2084896, 8046146, 31649992, 127031001, 518434863, 2153133594, 9081863859, 38909868272, 169096646271, 745348155211, 3329032020048, 15063018195100, 68998386313333, 319872246921326, 1500013368166112
Offset: 1
Inequivalent representatives of the a(6) = 14 leaf-colorings:
(1(1(1))) ((1)((1))) (1(((1)))) ((1((1)))) (((1(1)))) (((((1)))))
(1(1(2))) ((1)((2))) (1(((2)))) ((1((2)))) (((1(2))))
(1(2(1)))
(1(2(2)))
(1(2(3)))
-
idt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[idt/@c]],UnsameQ@@#&],{c,IntegerPartitions[n-1]}]];
Table[Sum[BellB[Count[tree,{},{0,Infinity}]],{tree,idt[n]}],{n,16}]
-
\\ bell(n) is A000110(n).
WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
bell(n)={sum(k=1, n, stirling(n,k,2))}
seq(n)={my(v=[y], b=vector(n,k,bell(k))); for(n=2, n, v=concat(v[1], WeighMT(v))); vector(n, k, sum(i=1, k, polcoef(v[k],i)*b[i]))} \\ Andrew Howroyd, Dec 10 2020
A318230
Number of inequivalent leaf-colorings of binary rooted trees with 2n + 1 nodes.
Original entry on oeis.org
1, 2, 4, 18, 79, 474, 3166, 24451, 208702, 1958407, 19919811, 217977667, 2547895961, 31638057367, 415388265571, 5743721766718, 83356613617031, 1265900592208029, 20064711719120846, 331153885800672577, 5679210649417608867, 101017359002718628295, 1860460510677429522171
Offset: 0
Inequivalent representatives of the a(3) = 18 leaf-colorings of binary rooted trees with 7 nodes:
(1(1(11))) ((11)(11))
(1(1(12))) ((11)(12))
(1(1(22))) ((11)(22))
(1(1(23))) ((11)(23))
(1(2(11))) ((12)(12))
(1(2(12))) ((12)(13))
(1(2(13))) ((12)(34))
(1(2(22)))
(1(2(23)))
(1(2(33)))
(1(2(34)))
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, my(p=x*Ser(v[1..n-1])); v[n]=polcoef(p^2 + if(n%2==0, sRaise(p,2)), n)/2); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(20)) \\ Andrew Howroyd, Dec 11 2020
A318228
Number of inequivalent leaf-colorings of planted achiral trees with n nodes.
Original entry on oeis.org
1, 1, 3, 6, 13, 20, 43, 58, 115, 171, 323, 379, 1034, 1135, 2321, 4327, 8915, 9212, 33939, 34429, 128414, 234017, 417721, 418976, 2931624, 5096391, 11770830, 20357876, 64853630, 64858195
Offset: 1
Inequivalent representatives of the a(5) = 13 leaf-colorings:
(1111) ((111)) ((1)(1)) (((11))) ((((1))))
(1112) ((112)) ((1)(2)) (((12)))
(1122) ((123))
(1123)
(1234)
-
\\ See links in A339645 for combinatorial species functions.
G(v)={my(t=2, p=sv(1)); for(i=1, #v, my(d=v[i]); if(d>1, p=sApplyCI(symGroupCycleIndex(d), d, p, t)); t=t*d+1); p}
cycleIndex(n)={my(recurse(r,v)=if(r==1, G(v), sumdiv(r-1, d, self()((r-1)/d, concat(d,v))))); recurse(n,[])}
a(n)={StructsByCycleIndex(n, cycleIndex(n), n)} \\ Andrew Howroyd, Dec 13 2020
A318229
Number of inequivalent leaf-colorings of transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 13, 34, 92, 255
Offset: 1
Inequivalent representatives of the a(5) = 13 leaf-colorings:
(1111) (1(11)) (11(1))
(1112) (1(12)) (11(2))
(1122) (1(22)) (12(1))
(1123) (1(23)) (12(3))
(1234)
A318234
Number of inequivalent leaf-colorings of totally transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 13, 34, 87
Offset: 1
Inequivalent representatives of the a(6) = 34 leaf-colorings:
(11(11)) (11111) (111(1)) (1(111)) (1(1)(1))
(11(12)) (11112) (111(2)) (1(112)) (1(1)(2))
(11(22)) (11122) (112(1)) (1(122)) (1(2)(2))
(11(23)) (11123) (112(2)) (1(123)) (1(2)(3))
(12(11)) (11223) (112(3)) (1(222))
(12(12)) (11234) (123(1)) (1(223))
(12(13)) (12345) (123(4)) (1(234))
(12(33))
(12(34))
Showing 1-6 of 6 results.
Comments