A318227 Number of inequivalent leaf-colorings of rooted identity trees with n nodes.
1, 1, 1, 3, 5, 14, 38, 114, 330, 1054, 3483, 11841, 41543, 149520, 552356, 2084896, 8046146, 31649992, 127031001, 518434863, 2153133594, 9081863859, 38909868272, 169096646271, 745348155211, 3329032020048, 15063018195100, 68998386313333, 319872246921326, 1500013368166112
Offset: 1
Keywords
Examples
Inequivalent representatives of the a(6) = 14 leaf-colorings: (1(1(1))) ((1)((1))) (1(((1)))) ((1((1)))) (((1(1)))) (((((1))))) (1(1(2))) ((1)((2))) (1(((2)))) ((1((2)))) (((1(2)))) (1(2(1))) (1(2(2))) (1(2(3)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
idt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[idt/@c]],UnsameQ@@#&],{c,IntegerPartitions[n-1]}]]; Table[Sum[BellB[Count[tree,{},{0,Infinity}]],{tree,idt[n]}],{n,16}]
-
PARI
\\ bell(n) is A000110(n). WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)} bell(n)={sum(k=1, n, stirling(n,k,2))} seq(n)={my(v=[y], b=vector(n,k,bell(k))); for(n=2, n, v=concat(v[1], WeighMT(v))); vector(n, k, sum(i=1, k, polcoef(v[k],i)*b[i]))} \\ Andrew Howroyd, Dec 10 2020
Formula
Extensions
Terms a(17) and beyond from Andrew Howroyd, Dec 10 2020
Comments