cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318230 Number of inequivalent leaf-colorings of binary rooted trees with 2n + 1 nodes.

Original entry on oeis.org

1, 2, 4, 18, 79, 474, 3166, 24451, 208702, 1958407, 19919811, 217977667, 2547895961, 31638057367, 415388265571, 5743721766718, 83356613617031, 1265900592208029, 20064711719120846, 331153885800672577, 5679210649417608867, 101017359002718628295, 1860460510677429522171
Offset: 0

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Examples

			Inequivalent representatives of the a(3) = 18 leaf-colorings of binary rooted trees with 7 nodes:
  (1(1(11)))  ((11)(11))
  (1(1(12)))  ((11)(12))
  (1(1(22)))  ((11)(22))
  (1(1(23)))  ((11)(23))
  (1(2(11)))  ((12)(12))
  (1(2(12)))  ((12)(13))
  (1(2(13)))  ((12)(34))
  (1(2(22)))
  (1(2(23)))
  (1(2(33)))
  (1(2(34)))
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, my(p=x*Ser(v[1..n-1])); v[n]=polcoef(p^2 + if(n%2==0, sRaise(p,2)), n)/2); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(20)) \\ Andrew Howroyd, Dec 11 2020

Extensions

Terms a(5) and beyond from Andrew Howroyd, Dec 10 2020