A318230 Number of inequivalent leaf-colorings of binary rooted trees with 2n + 1 nodes.
1, 2, 4, 18, 79, 474, 3166, 24451, 208702, 1958407, 19919811, 217977667, 2547895961, 31638057367, 415388265571, 5743721766718, 83356613617031, 1265900592208029, 20064711719120846, 331153885800672577, 5679210649417608867, 101017359002718628295, 1860460510677429522171
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(3) = 18 leaf-colorings of binary rooted trees with 7 nodes: (1(1(11))) ((11)(11)) (1(1(12))) ((11)(12)) (1(1(22))) ((11)(22)) (1(1(23))) ((11)(23)) (1(2(11))) ((12)(12)) (1(2(12))) ((12)(13)) (1(2(13))) ((12)(34)) (1(2(22))) (1(2(23))) (1(2(33))) (1(2(34)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..49
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, my(p=x*Ser(v[1..n-1])); v[n]=polcoef(p^2 + if(n%2==0, sRaise(p,2)), n)/2); x*Ser(v)} InequivalentColoringsSeq(cycleIndexSeries(20)) \\ Andrew Howroyd, Dec 11 2020
Extensions
Terms a(5) and beyond from Andrew Howroyd, Dec 10 2020