A318277 Triangle read by rows; T(n, k) is the number of divisors of A025487(n) having the same prime signature as A025487(k) where 1 <= k <= n.
1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 3, 0, 3, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 3, 1, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1
Offset: 1
Examples
A025487(9) = 30 and A025487(4) = 6 and have prime signatures (1, 1, 1) and (1, 1) respectively. There are three divisors of 30 with the prime signature (1, 1), being 6, 10 and 15. Therefore, T(9, 4) = 3. Triangle with rows n and columns k starts: 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 3, 0, 3, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 0, 2, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 3, 1, 3, 0, 2, 0, 0, 1, 0, 0, 0, 1,
Links
- David A. Corneth, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)
Programs
-
Mathematica
f[n_] := Block[{lim, ww}, Set[{lim, ww}, {Product[Prime@ i, {i, n}], NestList[Append[#, 1] &, {1}, n - 1]} ]; {{{0}}}~Join~Map[Block[{w = #, k = 1}, Sort@ Apply[Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[Do[If[# <= lim, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, #]] &@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}]][[-1]]] &, ww]]; With[{s = Sort@ Map[{Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, #], #} &, Join @@ f@ 4]}, Table[DivisorSum[s[[n, 1]], 1 &, If[Length@ # == 1, #, TakeWhile[#, # > 0 &]] &@ Sort[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &@ #, Greater] == s[[k, -1]] &], {n, Length@ s}, {k, n}]] // Flatten (* Michael De Vlieger, Oct 10 2018 *)
-
PARI
ps(y) = factor(y)[,2]; tabl(nn) = {v = al(nn); for (n=1, nn, d = divisors(v[n]); for (k=1, n, f = ps(v[k]); nb = #select(x->(ps(x) == f), d); print1(nb, ", ");); print;);} \\ Michel Marcus, Oct 11 2018; where al(n) is defined in A025487
Comments