A318318 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A173557.
1, 2, 1, 8, 1, 2, 1, 16, 2, 1, 1, 8, 1, 2, 1, 128, 1, 4, 1, 4, 1, 2, 1, 16, 1, 1, 2, 8, 1, 1, 1, 256, 1, 1, 1, 16, 1, 2, 1, 8, 1, 2, 1, 8, 1, 2, 1, 128, 2, 1, 1, 4, 1, 4, 1, 16, 1, 1, 1, 4, 1, 2, 2, 1024, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 8, 1, 1, 1, 64, 8, 1, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 4, 2, 1, 1, 1, 1, 8, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Denominator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
-
PARI
up_to = 16384; A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557 DirSqrt(v) = {my(n=#v, u=vector(nA173557)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318317_18 = DirSqrt(vector(up_to, n, A173557(n))); A318318(n) = denominator(v318317_18[n]);
Formula
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.
Comments