cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318319 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A064989.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 5, 3, 3, 7, 3, 11, 5, 3, 35, 13, 3, 17, 9, 5, 7, 19, 5, 27, 11, 5, 15, 23, 3, 29, 63, 7, 13, 15, 9, 31, 17, 11, 15, 37, 5, 41, 21, 9, 19, 43, 35, 75, 27, 13, 33, 47, 5, 21, 25, 17, 23, 53, 9, 59, 29, 15, 231, 33, 7, 61, 39, 19, 15, 67, 15, 71, 31, 27, 51, 35, 11, 73, 105, 35, 37, 79, 15, 39, 41, 23, 35, 83, 9, 55, 57
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

Multiplicative because A064989 is.
No negative terms among the first 2^20 terms.

Crossrefs

Cf. A064989, A317932 (seems to give denominators, see A261179).
Cf. also A318321.

Programs

  • PARI
    up_to = 16384;
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318319aux = DirSqrt(vector(up_to, n, A064989(n)));
    A318319(n) = numerator(v318319aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A064989(n) - Sum_{d|n, d>1, d 1.