cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318323 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A046523, smallest number with same prime signature as n.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 2, 35, 1, 5, 1, 5, 2, 2, 1, 4, 3, 2, 5, 5, 1, 9, 1, 63, 2, 2, 2, 35, 1, 2, 2, 4, 1, 9, 1, 5, 5, 2, 1, 55, 3, 5, 2, 5, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 5, 231, 2, 9, 1, 5, 2, 9, 1, 43, 1, 2, 5, 5, 2, 9, 1, 55, 35, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2, 5, 2, 2, 2, 49, 1, 5, 5, 35, 1, 9, 1, 4, 9
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

The first 2^20 terms are positive.

Crossrefs

Cf. A046523, A318324 (gives the denominators).

Programs

  • PARI
    up_to = 16384;
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318323_24 = DirSqrt(vector(up_to, n, A046523(n)));
    A318323(n) = numerator(v318323_24[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A046523(n) - Sum_{d|n, d>1, d 1.