A318323 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A046523, smallest number with same prime signature as n.
1, 1, 1, 3, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 2, 35, 1, 5, 1, 5, 2, 2, 1, 4, 3, 2, 5, 5, 1, 9, 1, 63, 2, 2, 2, 35, 1, 2, 2, 4, 1, 9, 1, 5, 5, 2, 1, 55, 3, 5, 2, 5, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 5, 231, 2, 9, 1, 5, 2, 9, 1, 43, 1, 2, 5, 5, 2, 9, 1, 55, 35, 2, 1, 9, 2, 2, 2, 4, 1, 9, 2, 5, 2, 2, 2, 49, 1, 5, 5, 35, 1, 9, 1, 4, 9
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
PARI
up_to = 16384; A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318323_24 = DirSqrt(vector(up_to, n, A046523(n))); A318323(n) = numerator(v318323_24[n]);
Formula
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A046523(n) - Sum_{d|n, d>1, d 1.
Comments