A318360 Number of set multipartitions (multisets of sets) of a multiset whose multiplicities are the prime indices of n.
1, 1, 1, 2, 1, 2, 1, 5, 3, 2, 1, 6, 1, 2, 3, 15, 1, 9, 1, 6, 3, 2, 1, 21, 4, 2, 16, 6, 1, 10, 1, 52, 3, 2, 4, 35, 1, 2, 3, 22, 1, 10, 1, 6, 19, 2, 1, 83, 5, 13, 3, 6, 1, 66, 4, 22, 3, 2, 1, 41, 1, 2, 20, 203, 4, 10, 1, 6, 3, 14, 1, 153, 1, 2, 26, 6, 5, 10, 1
Offset: 1
Keywords
Examples
The a(12) = 6 set multipartitions of {1,1,2,3}: {{1},{1,2,3}} {{1,2},{1,3}} {{1},{1},{2,3}} {{1},{2},{1,3}} {{1},{3},{1,2}} {{1},{1},{2},{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,80}]
-
PARI
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))} count(sig)={my(n=vecsum(sig), s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + O(x*x^n))); s+=prod(i=1, #sig, polcoef(q,sig[i]))*permcount(p)); s/n!} a(n)={if(n==1, 1, my(s=sig(n)); if(#s<=2, if(#s==1, 1, min(s[1],s[2])+1), count(sig(n))))} \\ Andrew Howroyd, Dec 10 2018
Formula
From Andrew Howroyd, Dec 10 2018:(Start)
a(p) = 1 for prime(p).
a(prime(i)*prime(j)) = min(i,j) + 1.
a(prime(n)^k) = A188392(n,k). (End)