A318361 Number of strict set multipartitions (sets of sets) of a multiset whose multiplicities are the prime indices of n.
1, 1, 0, 2, 0, 1, 0, 5, 1, 0, 0, 4, 0, 0, 0, 15, 0, 5, 0, 1, 0, 0, 0, 16, 0, 0, 8, 0, 0, 2, 0, 52, 0, 0, 0, 23, 0, 0, 0, 7, 0, 0, 0, 0, 5, 0, 0, 68, 0, 1, 0, 0, 0, 40, 0, 1, 0, 0, 0, 14, 0, 0, 1, 203, 0, 0, 0, 0, 0, 0, 0, 111, 0, 0, 4, 0, 0, 0, 0, 41, 80, 0, 0
Offset: 1
Keywords
Examples
The a(24) = 16 sets of sets with multiset union {1,1,2,3,4}: {{1},{1,2,3,4}} {{1,2},{1,3,4}} {{1,3},{1,2,4}} {{1,4},{1,2,3}} {{1},{2},{1,3,4}} {{1},{3},{1,2,4}} {{1},{4},{1,2,3}} {{1},{1,2},{3,4}} {{1},{1,3},{2,4}} {{1},{1,4},{2,3}} {{2},{1,3},{1,4}} {{3},{1,2},{1,4}} {{4},{1,2},{1,3}} {{1},{2},{3},{1,4}} {{1},{2},{4},{1,3}} {{1},{3},{4},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,90}]
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))} count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2} a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, s[1]==1, count(sig(n))))} \\ Andrew Howroyd, Dec 18 2018
Formula
a(prime(n)^k) = A188445(n, k). - Andrew Howroyd, Dec 17 2018