cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A305936 Irregular triangle whose n-th row is the multiset spanning an initial interval of positive integers with multiplicities equal to the n-th row of A296150 (the prime indices of n in weakly decreasing order).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Row 90 is {1,1,1,2,2,3,3,4} because 90 = prime(3)*prime(2)*prime(2)*prime(1).
Triangle begins:
   1:
   2:  1
   3:  1  1
   4:  1  2
   5:  1  1  1
   6:  1  1  2
   7:  1  1  1  1
   8:  1  2  3
   9:  1  1  2  2
  10:  1  1  1  2
  11:  1  1  1  1  1
  12:  1  1  2  3
  13:  1  1  1  1  1  1
		

Crossrefs

Row lengths are A056239. Number of distinct elements in row n is A001222(n). Number of distinct multiplicities in row n is A001221(n).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Array[nrmptn,30]

A318361 Number of strict set multipartitions (sets of sets) of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 5, 1, 0, 0, 4, 0, 0, 0, 15, 0, 5, 0, 1, 0, 0, 0, 16, 0, 0, 8, 0, 0, 2, 0, 52, 0, 0, 0, 23, 0, 0, 0, 7, 0, 0, 0, 0, 5, 0, 0, 68, 0, 1, 0, 0, 0, 40, 0, 1, 0, 0, 0, 14, 0, 0, 1, 203, 0, 0, 0, 0, 0, 0, 0, 111, 0, 0, 4, 0, 0, 0, 0, 41, 80, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2018

Keywords

Examples

			The a(24) = 16 sets of sets with multiset union {1,1,2,3,4}:
  {{1},{1,2,3,4}}
  {{1,2},{1,3,4}}
  {{1,3},{1,2,4}}
  {{1,4},{1,2,3}}
  {{1},{2},{1,3,4}}
  {{1},{3},{1,2,4}}
  {{1},{4},{1,2,3}}
  {{1},{1,2},{3,4}}
  {{1},{1,3},{2,4}}
  {{1},{1,4},{2,3}}
  {{2},{1,3},{1,4}}
  {{3},{1,2},{1,4}}
  {{4},{1,2},{1,3}}
  {{1},{2},{3},{1,4}}
  {{1},{2},{4},{1,3}}
  {{1},{3},{4},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,90}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
    a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, s[1]==1, count(sig(n))))} \\ Andrew Howroyd, Dec 18 2018

Formula

a(n) = A050326(A181821(n)).
a(prime(n)^k) = A188445(n, k). - Andrew Howroyd, Dec 17 2018

A318285 Number of non-isomorphic multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 3, 7, 7, 7, 9, 11, 12, 16, 5, 15, 17, 22, 16, 29, 19, 30, 16, 21, 30, 23, 29, 42, 52, 56, 7, 47, 45, 57, 43, 77, 67, 77, 31, 101, 98, 135, 47, 85, 97, 176, 29, 66, 64, 118, 77, 231, 69, 97, 57, 181, 139, 297, 137, 385, 195, 166, 11, 162, 171, 490, 118
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(12) = 9 multiset partitions of {1,1,2,3}:
  {{1,1,2,3}}
  {{1},{1,2,3}}
  {{2},{1,1,3}}
  {{1,1},{2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{2},{3},{1,1}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    sig(n)={my(f=factor(n), sig=vector(primepi(vecmax(f[,1])))); for(i=1, #f~, sig[primepi(f[i,1])]=f[i,2]); sig}
    C(sig)={my(n=sum(i=1, #sig, i*sig[i]), A=Vec(symGroupSeries(n)-1), B=O(x*x^n), c=prod(i=1, #sig, if(sig[i], sApplyCI(A[sig[i]], sig[i], A[i], i), 1))); polcoef(OgfSeries(sCartProd(c*x^n + B, sExp(x*Ser(A) + B))), n)}
    a(n)={if(n==1, 1, C(sig(n)))} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A317791(A181821(n)).

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 17 2023

A318287 Number of non-isomorphic strict multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 2, 3, 4, 5, 3, 7, 4, 7, 9, 5, 5, 12, 6, 12, 14, 10, 8, 13, 12, 14, 14, 18, 10, 34
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(20) = 12 strict multiset partitions of {1,1,1,2,3}:
  {{1,1,1,2,3}}
  {{1},{1,1,2,3}}
  {{2},{1,1,1,3}}
  {{1,1},{1,2,3}}
  {{1,2},{1,1,3}}
  {{2,3},{1,1,1}}
  {{1},{2},{1,1,3}}
  {{1},{1,1},{2,3}}
  {{1},{1,2},{1,3}}
  {{2},{3},{1,1,1}}
  {{2},{1,1},{1,3}}
  {{1},{2},{3},{1,1}}
		

Crossrefs

Formula

a(n) = A318357(A181821(n)).

A318362 Number of non-isomorphic set multipartitions (multisets of sets) of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 5, 1, 2, 3, 5, 1, 7, 1, 5, 3, 2, 1, 9, 4, 2, 8, 5, 1, 10
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2018

Keywords

Examples

			Non-isomorphic representatives of the a(12) = 5 set multipartitions of {1,1,2,3}:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{1},{2},{3}}
		

Crossrefs

Formula

a(n) = A318369(A181821(n)).
Showing 1-5 of 5 results.