cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318391 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet of length k.

Original entry on oeis.org

1, 1, 3, 1, 9, 15, 1, 21, 90, 113, 1, 45, 375, 1130, 1153, 1, 93, 1350, 7345, 17295, 15125, 1, 189, 4515, 39550, 161420, 317625, 245829, 1, 381, 14490, 192213, 1210650, 4023250, 6883212, 4815403, 1, 765, 45375, 878010, 8014503, 40020750, 113572998, 173354508, 111308699
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The T(3,2) = 9 pairs of set partitions:
  {{1},{2,3}}  {{1},{2,3}}
  {{1},{2,3}}   {{1,2,3}}
  {{1,2},{3}}  {{1,2},{3}}
  {{1,2},{3}}   {{1,2,3}}
  {{1,3},{2}}  {{1,3},{2}}
  {{1,3},{2}}   {{1,2,3}}
   {{1,2,3}}   {{1},{2,3}}
   {{1,2,3}}   {{1,2},{3}}
   {{1,2,3}}   {{1,3},{2}}
Triangle begins:
     1
     1     3
     1     9    15
     1    21    90   113
     1    45   375  1130  1153
     1    93  1350  7345 17295 15125
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[n,k]*Sum[StirlingS1[k,i]*BellB[i]^2,{i,k}],{n,10},{k,n}]
  • PARI
    row(n) = {my(b=Vec(serlaplace(exp(exp(x + O(x*x^n))-1)-1))); vector(n, k, stirling(n,k,2)*sum(i=1, k, stirling(k,i,1)*b[i]^2))}
    { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = S(n,k) * Sum_{i=1..k} s(k,i) * B(i)^2 where S = A008277, s = A048994, B = A000110.