A318391 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with meet of length k.
1, 1, 3, 1, 9, 15, 1, 21, 90, 113, 1, 45, 375, 1130, 1153, 1, 93, 1350, 7345, 17295, 15125, 1, 189, 4515, 39550, 161420, 317625, 245829, 1, 381, 14490, 192213, 1210650, 4023250, 6883212, 4815403, 1, 765, 45375, 878010, 8014503, 40020750, 113572998, 173354508, 111308699
Offset: 1
Examples
The T(3,2) = 9 pairs of set partitions: {{1},{2,3}} {{1},{2,3}} {{1},{2,3}} {{1,2,3}} {{1,2},{3}} {{1,2},{3}} {{1,2},{3}} {{1,2,3}} {{1,3},{2}} {{1,3},{2}} {{1,3},{2}} {{1,2,3}} {{1,2,3}} {{1},{2,3}} {{1,2,3}} {{1,2},{3}} {{1,2,3}} {{1,3},{2}} Triangle begins: 1 1 3 1 9 15 1 21 90 113 1 45 375 1130 1153 1 93 1350 7345 17295 15125
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
Table[StirlingS2[n,k]*Sum[StirlingS1[k,i]*BellB[i]^2,{i,k}],{n,10},{k,n}]
-
PARI
row(n) = {my(b=Vec(serlaplace(exp(exp(x + O(x*x^n))-1)-1))); vector(n, k, stirling(n,k,2)*sum(i=1, k, stirling(k,i,1)*b[i]^2))} { for(n=1, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023