cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318415 Expansion of Product_{i>=1, j>=1} 1/(1 - i*j*x^(i*j)).

Original entry on oeis.org

1, 1, 5, 11, 35, 69, 200, 398, 1014, 2069, 4820, 9716, 21787, 43209, 92530, 182773, 378676, 737526, 1492451, 2872788, 5686194, 10837935, 21052463, 39699970, 75972300, 141818166, 267607065, 495142606, 922920753, 1692529453, 3121105278, 5676677651, 10364752129, 18708292447, 33851433117, 60656841965
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[Product[1/(1 - i j x^(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Product[1/(1 - k x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[Sum[d^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - k*x^k)^tau(k), where tau = number of divisors (A000005).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d^(k/d+1)*tau(d) ) * x^k/k).
From Vaclav Kotesovec, Aug 27 2018: (Start)
a(n) ~ c * n * 3^(n/3), where
c = 10751825728554.298582954430359167227238488440778317... if mod(n,3)=0
c = 10751825728553.835664124121831524829543267756895348... if mod(n,3)=1
c = 10751825728553.838520991588115910603754564083195806... if mod(n,3)=2
In closed form, c = (Product_{k>=4}((1 - k/3^(k/3))^(-sigma(0,k)))) / (21 - 16*3^(1/3) + 3^(2/3)) - (3*Product_{k>=4}((1 + ((-1)^(1 + 2*k/3)*k)/3^(k/3))^(-sigma(0,k)))) / ((-1)^(2*n/3)*((3 + 2*(-3)^(1/3))^2*(-3 + (-3)^(2/3)))) + Product_{k>=4}((1 + ((-1)^(1 + 4*k/3)*k)/3^(k/3))^(-sigma(0,k))) / (9*(-1)^(4*n/3)*((1 + (-1/3)^(1/3))*(1 - 2*(-1/3)^(2/3))^2))
(End)