cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318444 Numerators of the sequence whose Dirichlet convolution with itself yields A057660(n) = Sum_{k=1..n} n/gcd(n,k).

Original entry on oeis.org

1, 3, 7, 35, 21, 21, 43, 239, 195, 63, 111, 245, 157, 129, 147, 6851, 273, 585, 343, 735, 301, 333, 507, 1673, 1643, 471, 3011, 1505, 813, 441, 931, 50141, 777, 819, 903, 6825, 1333, 1029, 1099, 5019, 1641, 903, 1807, 3885, 4095, 1521, 2163, 47957, 6555, 4929, 1911, 5495, 2757, 9033, 2331, 10277, 2401, 2439, 3423
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

Because A057660 contains only odd values, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.
General formula: if k >= 0, m > 0, and the Dirichlet generating function is zeta(s-k)^m * f(s), where f(s) has all possible poles at points less than k+1, then Sum_{j=1..n} a(j) ~ n^(k+1) * log(n)^(m-1) * f(k+1) / ((k+1) * Gamma(m)) * (1 + (m-1)*(m*gamma - 1/(k+1) + f'(k+1)/f(k+1)) / log(n)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function. - Vaclav Kotesovec, May 10 2025

Crossrefs

Cf. A057660, A046644 (denominators).
Cf. also A318443.

Programs

  • Mathematica
    a57660[n_] := DivisorSigma[2, n^2]/DivisorSigma[1, n^2];
    f[1] = 1; f[n_] := f[n] = 1/2 (a57660[n] - Sum[f[d]*f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    Table[f[n] // Numerator, {n, 1, 60}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A057660(n) = sumdivmult(n, d, eulerphi(d)*d); \\ From A057660
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318444aux = DirSqrt(vector(up_to, n, A057660(n)));
    A318444(n) = numerator(v318444aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1-p*X)/((1-p^2*X)*(1-X)))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057660(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318444(k) / A046644(k) ~ n^3 * Pi^(-3/2) * sqrt(2*zeta(3)/(3*log(n))) * (1 + (1/3 - gamma/2 + 3*zeta'(2)/Pi^2 - zeta'(3)/(2*zeta(3))) / (2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 10 2025