A318450 Denominators of the sequence whose Dirichlet convolution with itself yields A001511, the 2-adic valuation of 2n.
1, 1, 2, 1, 2, 2, 2, 1, 8, 2, 2, 2, 2, 2, 4, 1, 2, 8, 2, 2, 4, 2, 2, 2, 8, 2, 16, 2, 2, 4, 2, 1, 4, 2, 4, 8, 2, 2, 4, 2, 2, 4, 2, 2, 16, 2, 2, 2, 8, 8, 4, 2, 2, 16, 4, 2, 4, 2, 2, 4, 2, 2, 16, 1, 4, 4, 2, 2, 4, 4, 2, 8, 2, 2, 16, 2, 4, 4, 2, 2, 128, 2, 2, 4, 4, 2, 4, 2, 2, 16, 4, 2, 4, 2, 4, 2, 2, 8, 16, 8, 2, 4, 2, 2, 8
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
a1511[n_] := IntegerExponent[2n, 2]; f[1] = 1; f[n_] := f[n] = 1/2 (a1511[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]); Table[f[n] // Denominator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
-
PARI
up_to = 65537; A001511(n) = 1+valuation(n,2); DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d
A317937. v318449_51 = DirSqrt(vector(up_to, n, A001511(n))); A318450(n) = denominator(v318449_51[n]);
Comments