cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318453 Numerators of the sequence whose Dirichlet convolution with itself yields A001227, number of odd divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 231, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 35, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 63, 1, 1, 1, 3, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Crossrefs

Cf. A001227.
Cf. A318454 (gives the denominators).
Differs from A318313 for the first time at n=81, where a(81) = 1, while A318313(81) = 3.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Sum[Mod[d, 2], {d, Divisors[n]}] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]);
    Table[f[n] // Numerator, {n, 1, 105}] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A001227(n) = numdiv(n>>valuation(n, 2)); \\ From A001227
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318453_54 = DirSqrt(vector(up_to, n, A001227(n)));
    A318453(n) = numerator(v318453_54[n]);
    A318454(n) = denominator(v318453_54[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001227(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318453(k) / A318454(k) ~ n/sqrt(2). - Vaclav Kotesovec, May 09 2025