cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A318465 The number of Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the Zeckendorf expansion (A014417) of each s(i) contains only terms that are in the Zeckendorf expansion of r(i).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with Zeckendorf expansion instead of binary expansion. - Amiram Eldar, Jan 09 2020

Examples

			a(16) = 4 since 16 = 2^4 and the Zeckendorf expansion of 4 is 101, i.e., its Zeckendorf representation is a set with 2 terms: {1, 3}. There are 4 possible exponents of 2: 0, 1, 3 and 4, corresponding to the subsets {}, {1}, {3} and {1, 3}. Thus 16 has 4 Zeckendorf-infinitary divisors: 2^0 = 1, 2^1 = 2, 2^3 = 8, and 2^4 = 16.
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := 2^Length@fb[e]; a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n])); Array[a, 100] (* Amiram Eldar, Jan 09 2020 after Robert G. Wilson v at A014417 *)
  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A318465(n) = factorback(apply(e -> 2^A007895(e),factor(n)[,2]));

Formula

Multiplicative with a(p^e) = 2^A007895(e), where A007895(n) gives the number of terms in the Zeckendorf representation of n.
a(n) = 2^A318464(n).

Extensions

Name edited and interpretation in terms of divisors added by Amiram Eldar, Jan 09 2020

A318464 Additive with a(p^e) = A007895(e), where A007895(n) gives the number of terms in Zeckendorf representation of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

From Amiram Eldar, Aug 09 2024: (Start)
The number of factors of n of the form p^Fibonacci(k), where p is a prime and k >= 2, when the factorization is uniquely done using the Zeckendorf representation of the exponents in the prime factorization of n.
Equivalently, the number of Zeckendorf-infinitary divisors of n (defined in A318465) that are prime powers (A246655). (End)

Crossrefs

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; a[n_] := Total[z /@ FactorInteger[n][[;; , 2]]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, May 15 2023 *)
  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A318464(n) = vecsum(apply(e -> A007895(e),factor(n)[,2]));

Formula

a(n) = A007814(A318465(n)).
a(n) = A001222(A318469(n)).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{k>=2} (A007895(k)-A007895(k-1)) * P(k) = 0.05631817952062180045..., where P(s) is the prime zeta function. - Amiram Eldar, Oct 09 2023

A318672 Denominators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (possibly of A282446 and A318469).

Crossrefs

Cf. A049599, A318671 (numerators), A318673.

Programs

  • PARI
    up_to = (2^16)+1;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2]));
    v318671_62 = DirSqrt(vector(up_to, n, A049599(n)));
    A318671(n) = numerator(v318671_62[n]);
    A318672(n) = denominator(v318671_62[n]);
    A318673(n) = valuation(A318672(n),2);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318673(n).

A318470 Multiplicative with a(p^e) = A260443(e).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 6, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 12, 3, 4, 6, 6, 2, 8, 2, 18, 4, 4, 4, 9, 2, 4, 4, 12, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 12, 4, 12, 4, 4, 2, 12, 2, 4, 6, 15, 4, 8, 2, 6, 4, 8, 2, 18, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 12, 2, 12, 4, 6, 4, 4, 4, 36, 2, 6, 6, 9, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Crossrefs

Differs from A293442 for the first time at n=32, where a(32) = 18, while A293442(32) = 10.

Programs

Formula

For all n >= 1, A001222(a(n)) = A318306(n).
Showing 1-4 of 4 results.