A318494 Number of rooted simple connected graphs on n unlabeled nodes where every block is a complete graph with nonroot nodes of two colors.
1, 2, 10, 50, 285, 1696, 10647, 68842, 456922, 3091546, 21252396, 147992264, 1041779912, 7401119718, 52996414666, 382095695324, 2771458821772, 20209364313202, 148064910503435, 1089415620952020, 8046283404651000, 59635009544475814, 443380411766040664
Offset: 1
Keywords
Examples
a(3) = 10 because there are three possible rooted graphs which are illustrated below and these can be colored up to isomorphism in 3, 3 and 4 ways respectively. o---o o o o---o \ / \ / \ * * *
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1116 (first 200 terms from Andrew Howroyd)
Programs
-
Maple
b:= ((proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n) end end)@@2)(2*a): a:= n-> b(n-1): seq(a(n), n=1..25); # Alois P. Heinz, Aug 27 2018
-
Mathematica
etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b]; a[n_] := b[n-1]; b = etr@etr@(2a[#]&); Array[a, 25] (* Jean-François Alcover, Nov 01 2020 *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
Comments