cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318494 Number of rooted simple connected graphs on n unlabeled nodes where every block is a complete graph with nonroot nodes of two colors.

Original entry on oeis.org

1, 2, 10, 50, 285, 1696, 10647, 68842, 456922, 3091546, 21252396, 147992264, 1041779912, 7401119718, 52996414666, 382095695324, 2771458821772, 20209364313202, 148064910503435, 1089415620952020, 8046283404651000, 59635009544475814, 443380411766040664
Offset: 1

Views

Author

Andrew Howroyd, Aug 27 2018

Keywords

Comments

Number of rooted spanning hypertrees on n unlabeled nodes with edges of size 1 allowed.
Shifts left when Euler transform is applied twice to double this sequence.

Examples

			a(3) = 10 because there are three possible rooted graphs which are illustrated below and these can be colored up to isomorphism in 3, 3 and 4 ways respectively.
  o---o   o   o   o---o
   \ /     \ /     \
    *       *       *
		

Crossrefs

Programs

  • Maple
    b:= ((proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1,
            add(add(d*p(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
          end end)@@2)(2*a):
    a:= n-> b(n-1):
    seq(a(n), n=1..25);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b];
    a[n_] := b[n-1];
    b = etr@etr@(2a[#]&);
    Array[a, 25] (* Jean-François Alcover, Nov 01 2020 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}