cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318528 a(n) = least number > 1 that equals the sum of the n-th powers of its first k divisors for some k.

Original entry on oeis.org

6, 130, 36, 41860, 276, 1015690, 2316, 921951940, 20196, 10009766650, 179196, 2387003305930334914, 1602516, 100006103532010, 14381676, 1880100018939820249188604888836, 129271236, 1000003814697527770, 1162785756, 19105043663614041367780, 10462450356, 10000002384185795209930, 94151567436, 226500219158007133816826003223992308820431641700
Offset: 1

Views

Author

Amiram Eldar, Aug 28 2018

Keywords

Comments

a(48) > 10^90. - Max Alekseyev, Jan 17 2025

Examples

			a(2) = 130 since 130 has the divisors 1, 2, 5, 10, ... and 1^2 + 2^2 + 5^2 + 10^2 = 130.
		

Crossrefs

Programs

  • Mathematica
    a[k_] := Module[{n = 2}, While[! MemberQ[Accumulate[Divisors[n]^k], n], n++]; n]; Do[Print[a[n]], {n, 1, 10}]
  • PARI
    a(n) = for(x=2, oo, my(div=divisors(x), s=0); for(k=1, #div, s=sum(i=1, k, div[i]^n); if(s==x, return(x)))) \\ Felix Fröhlich, Aug 28 2018

Formula

a(n) = 1 + 2^n + 3^n for n = p^k with prime p > 2. - Giovanni Resta, Aug 28 2018
From Charlie Neder, Jan 24 2019: (Start)
a(n) = 1 + 2^n + 3^n for n odd,
a(n) = 1 + 2^n + 5^n + 10^n for n congruent to 2 modulo 4,
a(n) = 1 + 2^n + 4^n + 5^n + 7^n + 10^n + 13^n for n congruent to 4 or 8 modulo 12 and not 16 modulo 20.
All other a(n) contain a term at least 24^n. (End)

Extensions

a(12)-a(24) from Giovanni Resta confirmed by Max Alekseyev, Jan 04 2025