A318555 "Strong impostors" not divisible by 4: Those numbers s !== 0 (mod 4) such that lambda(s) | 2(s-1), where lambda is the Carmichael function (A002322).
6, 15, 66, 91, 435, 561, 703, 946, 1105, 1729, 1891, 2465, 2701, 2821, 2926, 3367, 5551, 6601, 8646, 8695, 8911, 10585, 11305, 12403, 13981, 15051, 15841, 16471, 18721, 23001, 26335, 29341, 30889, 38503, 39865, 41041, 46657, 49141, 52633, 53131, 62745, 63973, 68101, 75361, 76627, 76798, 79003, 88561, 88831, 91001
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..8000 (terms 1..2773 from Barry Fagin)
- D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn, Giuga's Conjecture on Primality, Amer. Math. Monthly 103, No. 1, 40-50 (1996).
- B. S. Fagin, Composite Numbers That Give Valid RSA Key Pairs For Any Coprime p, Information, 9, 216; doi:10.3390/info9090216.
- J. M. Grau and Antonio Oller-Marcén, Generalizing Giuga's conjecture, arXiv:1103.3483 [math.NT], 2011.
Programs
-
Mathematica
Reap[For[s = 1, s < 10^5, s++, If[!Divisible[s, 4] && CompositeQ[s], If[ Divisible[2(s-1), CarmichaelLambda[s]], Print[s]; Sow[s]]]]][[2, 1]] (* Jean-François Alcover, Feb 18 2019 *)
-
PARI
isok(s) = s>1 && s%4>0 && !isprime(s) && (2*s-2)%lcm(znstar(s)[2])==0; \\ Jinyuan Wang, Mar 01 2020
Comments