A318558 Number of degrees of irreducible representations of symmetric group S_n that appear more than once.
0, 0, 1, 1, 2, 3, 4, 6, 10, 14, 20, 26, 35, 43, 49, 77, 103, 125, 174, 190, 274, 340, 430, 496, 686, 838, 1026, 1263, 1579, 1832, 2457, 2833, 3631, 4249, 5114, 6111, 7962, 9072, 11015, 12939, 16173, 18304, 23101, 26188, 31822, 37518, 45073, 51403, 63489, 71822
Offset: 0
Keywords
Examples
Number 4 has the following partitions: a) [4], b) [3, 1], c) [2, 2], d) [2, 1, 1], e) [1, 1, 1, 1]. For partition a the cardinality of standard Young tableaux is 1, for b 3, for c 2, for d 3 and for e 1, so multiple cardinalities are 1 and 3: two multiple cardinalities, i.e., 4th sequence element is 2.
Programs
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := a[n] = If[n == 0 || n == 1, 0, Count[Tally[g[n, n, {}]], {, k /; k > 1}] ]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 49}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
-
SageMath
r="" lista=[] lista_rip=[] rip=0 for i in range(1,35): l=Partitions(i) for p in l: nsc=StandardTableaux(p).cardinality() if nsc in lista: if nsc not in lista_rip: lista_rip.append(nsc) rip += 1 else: lista.append(nsc) r = r+","+str(rip) rip=0 lista=[] lista_rip=[] print(r)
Formula
Extensions
a(42)-a(49) from Alois P. Heinz, Aug 29 2018