A318564 Number of multiset partitions of multiset partitions of normal multisets of size n.
1, 6, 36, 274, 2408, 24440, 279172, 3542798, 49354816, 747851112, 12231881948, 214593346534, 4016624367288, 79843503990710, 1678916979373760, 37215518578700028, 866953456654946948, 21167221410812128266, 540346299720320080828, 14390314687100383124540, 399023209689817997883900
Offset: 1
Keywords
Examples
The a(2) = 6 multiset partitions of multiset partitions: {{{1,1}}} {{{1,2}}} {{{1},{1}}} {{{1},{2}}} {{{1}},{{1}}} {{{1}},{{2}}}
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Sum[Length[mps[m]],{m,Join@@mps/@allnorm[n]}],{n,6}]
-
PARI
\\ See links in A339645 for combinatorial species functions. seq(n)={my(A=symGroupSeries(n)); NormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Jan 01 2021
Extensions
Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021
Comments