cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318570 Expansion of Product_{k>=1} ((1 - x)^k + x^k)/((1 - x)^k - x^k).

Original entry on oeis.org

1, 2, 6, 18, 52, 146, 402, 1090, 2916, 7708, 20160, 52236, 134222, 342304, 867024, 2182384, 5461696, 13595918, 33677550, 83036878, 203859820, 498470998, 1214230586, 2947204870, 7129403128, 17191258642, 41328057106, 99067295658, 236822823336, 564650823162, 1342921372126
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

First differences of the binomial transform of A015128.
Convolution of A129519 and A218482.

Crossrefs

Programs

  • Maple
    a:=series(mul(((1-x)^k+x^k)/((1-x)^k-x^k),k=1..100),x=0,31): seq(coeff(a,x,n),n=0..30); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 - x)^k + x^k)/((1 - x)^k - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[1/EllipticTheta[4, 0, x/(1 - x)], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k]) x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: 1/theta_4(x/(1 - x)), where theta_4() is the Jacobi theta function.
G.f.: exp(Sum_{k>=1} (sigma(2*k) - sigma(k))*x^k/(k*(1 - x)^k)).
a(n) ~ 2^(n-3) * exp(Pi*sqrt(n/2) + Pi^2/16) / n. - Vaclav Kotesovec, Oct 15 2018