A307520 Expansion of Product_{k>=1} ((1 - x)^k - x^k)/((1 - x)^k + x^k).
1, -2, -2, -2, 0, 6, 18, 38, 68, 108, 148, 148, -2, -552, -2004, -5280, -11960, -24590, -46990, -84254, -141476, -218654, -295794, -295374, 3540, 1148110, 4378918, 12332318, 30327568, 68633710, 146303026, 297349758, 580052778, 1089382158, 1969425038, 3413378318, 5614375970
Offset: 0
Examples
From _Peter Bala_, Dec 31 2024: (Start) With the array u as defined above, the lower triangular array Sum_{n = -2..2} (-1)^n * u^(n^2) = I - 2*u + 2*u^4 begins 1; -2, 1; -2, -2, 1; -2, -2, -2, 1; 0, -2, -2, -2, 1; 6, 0, -2, -2, -2, 1; 18, 6, 0, -2, -2, -2, 1; 38, 18, 6, 0, -2, -2, -2, 1; 68, 38, 18, 6, 0, -2, -2, -2, 1; (End)
Programs
-
Maple
a(n) := 2*add( (-1)^k * binomial(n-1, n-k^2), k = 1..floor(sqrt(n))): print(1, seq(a(n), n = 1..40)); # Peter Bala, Dec 31 2024
-
Mathematica
m = 36; CoefficientList[Series[Product[((1 - x)^k - x^k)/((1 - x)^k + x^k), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
-
PARI
N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1-x)^k-x^k)/((1-x)^k+x^k)))
Formula
G.f.: theta_4(x/(1 - x)), where theta_4() is the Jacobi theta function.
For n >= 1, a(n) = 2 * Sum_{k = 1..floor(sqrt(n))} (-1)^k * binomial(n-1, n-k^2). - Peter Bala, Dec 31 2024
Comments